Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 9/2021

07-06-2021

The Room Temperature Creep of Selective Laser Melted 316L Stainless Steel Investigated by Nanoindentation

Authors: Yuanjian Hong, Chengshuang Zhou, Yuanyuan Zheng, Lin Zhang, Jinyang Zheng

Published in: Journal of Materials Engineering and Performance | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The unique cellular sub-grain caused by selective laser melting (SLM) and its effect on nanoindentation creep were investigated in the SLM 316L stainless steel by nanoindentation and microstructure analysis. The load of the first pop-in of the SLM 316L sample was higher than that of the annealed sample, indicating that dislocation nucleation was inhibited. The cellular sub-grains and the high density of dislocations were observed in the SLM 316L sample, which greatly suppressed the primary creep and steady-state creep of the SLM 316L sample compared with the annealed sample. The creep stress exponent of all the samples varied from 35.7 to 62.5, indicating that the creep process was dominated by the mechanism of dislocation movement. The cellular sub-grain boundary and high density of dislocations inhibited the motion of dislocation, which were responsible for the improved creep resistance of the SLM 316L steel.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Zhong, L. Liu, S. Wikman, D. Cui and Z. Shen, Intragranular Cellular Segregation Network Structure Strengthening 316L Stainless Steel Prepared by Selective Laser Melting, J. Nucl. Mater., 2016, 470, p 170–178. (in English)CrossRef Y. Zhong, L. Liu, S. Wikman, D. Cui and Z. Shen, Intragranular Cellular Segregation Network Structure Strengthening 316L Stainless Steel Prepared by Selective Laser Melting, J. Nucl. Mater., 2016, 470, p 170–178. (in English)CrossRef
2.
go back to reference M.S. Pham, B. Dovgyy and P.A. Hooper, Twinning Induced Plasticity in Austenitic Stainless Steel 316 L made by Additive Manufacturing, Mater. Sci. Eng. A., 2017, 704, p 102–111. (in English)CrossRef M.S. Pham, B. Dovgyy and P.A. Hooper, Twinning Induced Plasticity in Austenitic Stainless Steel 316 L made by Additive Manufacturing, Mater. Sci. Eng. A., 2017, 704, p 102–111. (in English)CrossRef
3.
go back to reference L. Liu, Q. Ding, Y. Zhong, J. Zou and J. Wu, Dislocation Network in Additive Manufactured Steel Breaks Strength-Ductility Trade-Off, Mater. Today., 2018, 21, p 354–361. (in English)CrossRef L. Liu, Q. Ding, Y. Zhong, J. Zou and J. Wu, Dislocation Network in Additive Manufactured Steel Breaks Strength-Ductility Trade-Off, Mater. Today., 2018, 21, p 354–361. (in English)CrossRef
4.
go back to reference R.M. German, Powder Metallurgy of Iron and Steel, Wiley, New York, 2002. R.M. German, Powder Metallurgy of Iron and Steel, Wiley, New York, 2002.
5.
go back to reference N. Kurgan and R. Varol, Mechanical Properties of P/M 316L Stainless Steel Materials, Powder. Technol., 2010, 201, p 242–247. (in English)CrossRef N. Kurgan and R. Varol, Mechanical Properties of P/M 316L Stainless Steel Materials, Powder. Technol., 2010, 201, p 242–247. (in English)CrossRef
6.
go back to reference M. Rosso, M.A. Grande and J. Achiev, High Density Sintered Stainless Steels with Improved Properties, Mater. Manag. Eng., 2007, 21, p 97–102. (in English) M. Rosso, M.A. Grande and J. Achiev, High Density Sintered Stainless Steels with Improved Properties, Mater. Manag. Eng., 2007, 21, p 97–102. (in English)
7.
go back to reference W.D. Callister, Materials Science and Engineering: An Introduction, Wiley, New York, 2000. W.D. Callister, Materials Science and Engineering: An Introduction, Wiley, New York, 2000.
8.
go back to reference M. Marya, V. Singh, S. Marya and J.Y. Hascoet, Microstructural Development and Technical Challenges in Laser Additive Manufacturing: Case Study with A 316L Industrial Part, Metall. Mater. Trans. B., 2015, 46, p 1654. (in English)CrossRef M. Marya, V. Singh, S. Marya and J.Y. Hascoet, Microstructural Development and Technical Challenges in Laser Additive Manufacturing: Case Study with A 316L Industrial Part, Metall. Mater. Trans. B., 2015, 46, p 1654. (in English)CrossRef
9.
go back to reference L. Zheng, Y. Liu, S. Sun and H. Zhang, Selective Laser Melting of Al-8.5Fe-1.3V-1.7Si Alloy: Investigation on the Resultant Microstructure and Hardness, Chin. J. Aeronaut., 2015, 28, p 564–569. (in English)CrossRef L. Zheng, Y. Liu, S. Sun and H. Zhang, Selective Laser Melting of Al-8.5Fe-1.3V-1.7Si Alloy: Investigation on the Resultant Microstructure and Hardness, Chin. J. Aeronaut., 2015, 28, p 564–569. (in English)CrossRef
10.
go back to reference T. Vilaro, C. Colin, J.D. Bartout, L. Nazé and M. Sennour, Microstructural and Mechanical Approaches of the Selective Laser Melting Process Applied to a Nickelbase Superalloy, Mater. Sci. Eng. A., 2012, 534, p 446–451. (in English)CrossRef T. Vilaro, C. Colin, J.D. Bartout, L. Nazé and M. Sennour, Microstructural and Mechanical Approaches of the Selective Laser Melting Process Applied to a Nickelbase Superalloy, Mater. Sci. Eng. A., 2012, 534, p 446–451. (in English)CrossRef
11.
go back to reference K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi and L. Wang, Microstructure and Mechanical Properties of Al–12Si Produced by Selective Laser Melting: Effect of Heat Treatment, Mater. Sci. Eng. A., 2014, 590, p 153–160. (in English)CrossRef K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi and L. Wang, Microstructure and Mechanical Properties of Al–12Si Produced by Selective Laser Melting: Effect of Heat Treatment, Mater. Sci. Eng. A., 2014, 590, p 153–160. (in English)CrossRef
12.
go back to reference E. Brandl, U. Heckenberger, V. Holzinger and D. Buchbinder, Additive Manufactured AlSi10Mg Samples Using Selective Laser Melting (SLM): Microstructure, High Cycle Fatigue, and Fracture Behavior, Mater. Des., 2012, 34, p 159–169. (in English)CrossRef E. Brandl, U. Heckenberger, V. Holzinger and D. Buchbinder, Additive Manufactured AlSi10Mg Samples Using Selective Laser Melting (SLM): Microstructure, High Cycle Fatigue, and Fracture Behavior, Mater. Des., 2012, 34, p 159–169. (in English)CrossRef
13.
go back to reference Y. Hong, C. Zhou, Y. Zheng, L. Zhang, J. Zheng and B. An, Formation of Strain-Induced Martensite in Selective Laser Melting Austenitic Stainless Steel, Mater. Sci. Eng. A., 2019, 740, p 420–426. (in English)CrossRef Y. Hong, C. Zhou, Y. Zheng, L. Zhang, J. Zheng and B. An, Formation of Strain-Induced Martensite in Selective Laser Melting Austenitic Stainless Steel, Mater. Sci. Eng. A., 2019, 740, p 420–426. (in English)CrossRef
14.
go back to reference S. Gorsse, C. Hutchinson, M. Gouné et al., Additive Manufacturing of Metals: a Brief Review of the Characteristic Microstructures and Properties of Steels, Ti-6Al-4V and High-Entropy Alloys, Sci. Technol. Adv. Mat., 2017, 18, p 584–610. (in English)CrossRef S. Gorsse, C. Hutchinson, M. Gouné et al., Additive Manufacturing of Metals: a Brief Review of the Characteristic Microstructures and Properties of Steels, Ti-6Al-4V and High-Entropy Alloys, Sci. Technol. Adv. Mat., 2017, 18, p 584–610. (in English)CrossRef
15.
go back to reference X.Y. Liu, Q.Q. Zhang, X.C. Zhao, X.R. Yang and L. Luo, Ambient-Temperature Nanoindentation Creep in Ultrafine-Grained Titanium Processed by ECAP, Mater. Sci. Eng. A., 2016, 676, p 73–79. (in English)CrossRef X.Y. Liu, Q.Q. Zhang, X.C. Zhao, X.R. Yang and L. Luo, Ambient-Temperature Nanoindentation Creep in Ultrafine-Grained Titanium Processed by ECAP, Mater. Sci. Eng. A., 2016, 676, p 73–79. (in English)CrossRef
16.
go back to reference C. Praveen, J. Christopher, V. Ganesan, G.V. Prasad Reddy, G. Sasikala and S.K. Albert, Constitutive Modelling of Transient and Steady State Creep Behaviour of Type 316LN Austenitic Stainless Steel, Mech Mater., 2019, 137, p 103122. (in English)CrossRef C. Praveen, J. Christopher, V. Ganesan, G.V. Prasad Reddy, G. Sasikala and S.K. Albert, Constitutive Modelling of Transient and Steady State Creep Behaviour of Type 316LN Austenitic Stainless Steel, Mech Mater., 2019, 137, p 103122. (in English)CrossRef
17.
go back to reference J.R.O. Leo, S. Pirfo Barroso, M.E. Fitzpatrick, M. Wang and Z. Zhou, Microstructure, Tensile and Creep Properties of an Austenitic ODS 316L steel, Mater. Sci. Eng. A., 2019, 749, p 158–165. (in English)CrossRef J.R.O. Leo, S. Pirfo Barroso, M.E. Fitzpatrick, M. Wang and Z. Zhou, Microstructure, Tensile and Creep Properties of an Austenitic ODS 316L steel, Mater. Sci. Eng. A., 2019, 749, p 158–165. (in English)CrossRef
18.
go back to reference M.D. Mathew, K. Laha and V. Ganesan, Improving Creep Strength of 316L Stainless Steel by Alloying with Nitrogen, Mater. Sci. Eng. A., 2012, 535, p 76–83. (in English)CrossRef M.D. Mathew, K. Laha and V. Ganesan, Improving Creep Strength of 316L Stainless Steel by Alloying with Nitrogen, Mater. Sci. Eng. A., 2012, 535, p 76–83. (in English)CrossRef
19.
go back to reference Y.K. Wang, W.S. Liu and Y.Z. Ma, Influence of Dislocation Density on Micromechanical Characteristics of Cu6Sn5 and Cu3Sn, Mater. Sci. Forum., 2015, 815, p 115–124. (in English)CrossRef Y.K. Wang, W.S. Liu and Y.Z. Ma, Influence of Dislocation Density on Micromechanical Characteristics of Cu6Sn5 and Cu3Sn, Mater. Sci. Forum., 2015, 815, p 115–124. (in English)CrossRef
20.
go back to reference J. Hu, G. Sun, X. Zhang, G. Wang, Z. Jiang, S. Han, J. Zhang and J. Lian, Effects of Loading Strain Rate and Stacking Fault Energy on Nanoindentation Creep Behaviors of Nanocrystalline Cu, Ni-20 wt.% Fe and Ni, J. Alloys Comp., 2015, 647, p 670–680. (in English)CrossRef J. Hu, G. Sun, X. Zhang, G. Wang, Z. Jiang, S. Han, J. Zhang and J. Lian, Effects of Loading Strain Rate and Stacking Fault Energy on Nanoindentation Creep Behaviors of Nanocrystalline Cu, Ni-20 wt.% Fe and Ni, J. Alloys Comp., 2015, 647, p 670–680. (in English)CrossRef
21.
go back to reference Y. Hong, C. Zhou, Y. Zheng, L. Zhang, J. Zheng and B. An, Hydrogen Effect on the Deformation Evolution Process In Situ Detected by Nanoindentation Continuous Stiffness Measurement, Mater Charact., 2017, 127, p 35–40. (in English)CrossRef Y. Hong, C. Zhou, Y. Zheng, L. Zhang, J. Zheng and B. An, Hydrogen Effect on the Deformation Evolution Process In Situ Detected by Nanoindentation Continuous Stiffness Measurement, Mater Charact., 2017, 127, p 35–40. (in English)CrossRef
22.
go back to reference V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel and M. Göken, Nanoindentation Strain-Rate Jump Tests for Determining the Local Strain-Rate Sensitivity in Nanocrystalline Ni and Ultrafine-Grained Al, J. Mater. Res., 2011, 26, p 1421–1430. (in English)CrossRef V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel and M. Göken, Nanoindentation Strain-Rate Jump Tests for Determining the Local Strain-Rate Sensitivity in Nanocrystalline Ni and Ultrafine-Grained Al, J. Mater. Res., 2011, 26, p 1421–1430. (in English)CrossRef
23.
go back to reference Y. Hong, C. Zhou, Y. Zheng, L. Zhang and J. Zheng, Effect of Hydrogen and Strain Rate on Nanoindentation Creep of Austenitic Stainless Steel, Int. J. Hydrogen Energy, 2019, 44, p 1253–1262. (in English)CrossRef Y. Hong, C. Zhou, Y. Zheng, L. Zhang and J. Zheng, Effect of Hydrogen and Strain Rate on Nanoindentation Creep of Austenitic Stainless Steel, Int. J. Hydrogen Energy, 2019, 44, p 1253–1262. (in English)CrossRef
24.
go back to reference X. Lou, M.A. Othon and R.B. Rebak, Corrosion Fatigue Crack Growth of Laser Additively-Manufactured 316L Stainless Steel in High Temperature Water, Corros. Sci., 2017, 127, p 120–130. (in English)CrossRef X. Lou, M.A. Othon and R.B. Rebak, Corrosion Fatigue Crack Growth of Laser Additively-Manufactured 316L Stainless Steel in High Temperature Water, Corros. Sci., 2017, 127, p 120–130. (in English)CrossRef
25.
go back to reference K. Saeidi, X. Gao, F. Lofaj, L. Kvetková and Z.J. Shen, Transformation of Austenite to Duplex Austenite-Ferrite Assembly in Annealed Stainless Steel 316L Consolidated by Laser Melting, J. Alloys Comp., 2015, 633, p 463–469. (in English)CrossRef K. Saeidi, X. Gao, F. Lofaj, L. Kvetková and Z.J. Shen, Transformation of Austenite to Duplex Austenite-Ferrite Assembly in Annealed Stainless Steel 316L Consolidated by Laser Melting, J. Alloys Comp., 2015, 633, p 463–469. (in English)CrossRef
26.
go back to reference D.H. Lee, J.A. Lee, M.Y. Seok, U.B. Baek and S.H. Nahm, Stress-Dependent Hardening-to-Softening Transition of Hydrogen Effects in Nanoindentation of a Linepipe Steel, Int. J. Hydrogen Energy., 2014, 39, p 1897–1902. (in English)CrossRef D.H. Lee, J.A. Lee, M.Y. Seok, U.B. Baek and S.H. Nahm, Stress-Dependent Hardening-to-Softening Transition of Hydrogen Effects in Nanoindentation of a Linepipe Steel, Int. J. Hydrogen Energy., 2014, 39, p 1897–1902. (in English)CrossRef
27.
go back to reference J.J. Hu, W. Zhang, G.L. Bi, J.W. Lu, W.T. Huo and Y.S. Zhang, Nanoindentation Creep Behavior of Coarse-Grained and Ultrafine-Grained Pure Magnesium and AZ31 Alloy, Mater. Sci. Eng. A., 2017, 698, p 348–355. (in English)CrossRef J.J. Hu, W. Zhang, G.L. Bi, J.W. Lu, W.T. Huo and Y.S. Zhang, Nanoindentation Creep Behavior of Coarse-Grained and Ultrafine-Grained Pure Magnesium and AZ31 Alloy, Mater. Sci. Eng. A., 2017, 698, p 348–355. (in English)CrossRef
28.
go back to reference K. Durst, B. Backes and M. Göken, Indentation Size Effect in Metallic Materials: Correcting for the Size of the Plastic Zone, Scr. Mater., 2005, 52, p 1093–1097. (in English)CrossRef K. Durst, B. Backes and M. Göken, Indentation Size Effect in Metallic Materials: Correcting for the Size of the Plastic Zone, Scr. Mater., 2005, 52, p 1093–1097. (in English)CrossRef
29.
go back to reference J. Alkorta, J.M. Martinez-Esnaola and J.G. Sevillano, Critical Examination of Strain-Rate Sensitivity Measurement by Nanoindentation Methods: Application to Severely Deformed Niobium, Acta Mater., 2008, 56, p 884–893. (in English)CrossRef J. Alkorta, J.M. Martinez-Esnaola and J.G. Sevillano, Critical Examination of Strain-Rate Sensitivity Measurement by Nanoindentation Methods: Application to Severely Deformed Niobium, Acta Mater., 2008, 56, p 884–893. (in English)CrossRef
30.
go back to reference L. Zhang, B. An, S. Fukuyama and K. Yokogawa, Hydrogen Effects on Localized Plasticity in SUS310S Stainless Steel Investigated by Nanoindentation and Atomic Forcemicroscopy, Jpn. J. Appl. Phys., 2009, 48, p 8. (in English) L. Zhang, B. An, S. Fukuyama and K. Yokogawa, Hydrogen Effects on Localized Plasticity in SUS310S Stainless Steel Investigated by Nanoindentation and Atomic Forcemicroscopy, Jpn. J. Appl. Phys., 2009, 48, p 8. (in English)
31.
go back to reference A. Barnoush and H. Vehoff, In situ Electrochemical Nanoindentation: a Technique for Local Examination of Hydrogen Embrittlement, Corros. Sci., 2008, 50, p 259–267. (in English)CrossRef A. Barnoush and H. Vehoff, In situ Electrochemical Nanoindentation: a Technique for Local Examination of Hydrogen Embrittlement, Corros. Sci., 2008, 50, p 259–267. (in English)CrossRef
32.
go back to reference L. Shen, W.C.D. Cheong, L.F. Yong and Z. Chen, Nanoindentation Creep of Tin and Aluminium: a Comparative Study Between Constant Load and Constant Strain Rate Methods, Mater. Sci. Eng. A., 2012, 532, p 505–510. (in English)CrossRef L. Shen, W.C.D. Cheong, L.F. Yong and Z. Chen, Nanoindentation Creep of Tin and Aluminium: a Comparative Study Between Constant Load and Constant Strain Rate Methods, Mater. Sci. Eng. A., 2012, 532, p 505–510. (in English)CrossRef
33.
go back to reference Y. Liu, C. Huang, H. Bei, X. He and W. Hu, Room Temperature Nanoindentation Creep of Nanocrystalline Cu and Cu Alloys, Mater. Lett., 2012, 70, p 6–29. (in English) Y. Liu, C. Huang, H. Bei, X. He and W. Hu, Room Temperature Nanoindentation Creep of Nanocrystalline Cu and Cu Alloys, Mater. Lett., 2012, 70, p 6–29. (in English)
34.
go back to reference W. Zhang, Y. Liu, H. Wu, X. Lan, J. Qiu, T. Hu and H. Tang, Room Temperature Creep Behavior of Ti–Nb–Ta–Zr–O Alloy, Mater. Charact., 2016, 118, p 29–36. (in English)CrossRef W. Zhang, Y. Liu, H. Wu, X. Lan, J. Qiu, T. Hu and H. Tang, Room Temperature Creep Behavior of Ti–Nb–Ta–Zr–O Alloy, Mater. Charact., 2016, 118, p 29–36. (in English)CrossRef
35.
go back to reference C.L. Wang, Y.H. Lai, J.C. Huang and T.G. Nieh, Creep of Nanocrystalline Nickel: a Direct Comparison Between Uniaxial and Nanoindentation Creep, Scr. Mater., 2010, 62, p 175–178. (in English)CrossRef C.L. Wang, Y.H. Lai, J.C. Huang and T.G. Nieh, Creep of Nanocrystalline Nickel: a Direct Comparison Between Uniaxial and Nanoindentation Creep, Scr. Mater., 2010, 62, p 175–178. (in English)CrossRef
36.
go back to reference H. Li and A. Ngan, Indentation Size Effects on the Strain Rate Sensitivity of Nanocrystalline Ni-25 at%Al thin films, Scr. Mater., 2005, 52, p 827–831. (in English)CrossRef H. Li and A. Ngan, Indentation Size Effects on the Strain Rate Sensitivity of Nanocrystalline Ni-25 at%Al thin films, Scr. Mater., 2005, 52, p 827–831. (in English)CrossRef
37.
go back to reference P. Sudharshan and W.C. Oliver. Phani, A Direct Comparison of High Temperature Nanoindentation Creep and Uniaxial Creep Measurements for Commercial Purity Aluminum, Acta Mater., 2016, 111, p 31–38. (in English)CrossRef P. Sudharshan and W.C. Oliver. Phani, A Direct Comparison of High Temperature Nanoindentation Creep and Uniaxial Creep Measurements for Commercial Purity Aluminum, Acta Mater., 2016, 111, p 31–38. (in English)CrossRef
38.
go back to reference Y.M. Wang, T. Voisin, J.T. Mckeown and J. Ye, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2017, 17, p 63–70. (in English)CrossRef Y.M. Wang, T. Voisin, J.T. Mckeown and J. Ye, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2017, 17, p 63–70. (in English)CrossRef
39.
go back to reference B. Devincre, T. Hoc and L. Kubin, Dislocation Mean Free Paths and Strain Hardening of Crystals, Science, 2008, 320, p 1745–1748. (in English)CrossRef B. Devincre, T. Hoc and L. Kubin, Dislocation Mean Free Paths and Strain Hardening of Crystals, Science, 2008, 320, p 1745–1748. (in English)CrossRef
Metadata
Title
The Room Temperature Creep of Selective Laser Melted 316L Stainless Steel Investigated by Nanoindentation
Authors
Yuanjian Hong
Chengshuang Zhou
Yuanyuan Zheng
Lin Zhang
Jinyang Zheng
Publication date
07-06-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 9/2021
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05870-6

Other articles of this Issue 9/2021

Journal of Materials Engineering and Performance 9/2021 Go to the issue

Premium Partners