Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 12/2017

28-11-2017

The Simulation of Precipitation Evolutions and Mechanical Properties in Friction Stir Welding with Post-Weld Heat Treatments

Authors: Z. Zhang, Z. Y. Wan, L.-E. Lindgren, Z. J. Tan, X. Zhou

Published in: Journal of Materials Engineering and Performance | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A finite element model of friction stir welding capable of re-meshing is used to simulate the temperature variations. Re-meshing of the finite element model is used to maintain a fine mesh resolving the gradients of the solution. The Kampmann–Wagner numerical model for precipitation is then used to study the relation between friction stir welds with post-weld heat treatment (PWHT) and the changes in mechanical properties. Results indicate that the PWHT holding time and PWHT holding temperature need to be optimally designed to obtain FSW with better mechanical properties. Higher precipitate number with lower precipitate sizes gives higher strength in the stirring zone after PWHT. The coarsening of precipitates in HAZ are the main reason to hinder the improvement of mechanical property when PWHT is used.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Lohwasser and Z. Chen, Friction Stir Welding: From Basics to Applications, Woodhead Publishing, Sawston, 2010CrossRef D. Lohwasser and Z. Chen, Friction Stir Welding: From Basics to Applications, Woodhead Publishing, Sawston, 2010CrossRef
2.
go back to reference F.F. Wang, W.Y. Li, J. Shen, Z.H. Zhang, J.L. Li, and J.F. dos Santos, Global and Local Mechanical Properties and Microstructure of Bobbin Tool Friction-Stir-Welded Al-Li Alloy, Sci. Technol. Weld. Joining, 2016, 21, p 479–483CrossRef F.F. Wang, W.Y. Li, J. Shen, Z.H. Zhang, J.L. Li, and J.F. dos Santos, Global and Local Mechanical Properties and Microstructure of Bobbin Tool Friction-Stir-Welded Al-Li Alloy, Sci. Technol. Weld. Joining, 2016, 21, p 479–483CrossRef
3.
go back to reference P.L. Threadgill, A.J. Leonard, H.R. Shercliff, and P.J. Withers, Friction Stir Welding of Aluminium Alloys, Int. Mater. Rev., 2009, 54, p 49–53CrossRef P.L. Threadgill, A.J. Leonard, H.R. Shercliff, and P.J. Withers, Friction Stir Welding of Aluminium Alloys, Int. Mater. Rev., 2009, 54, p 49–53CrossRef
4.
go back to reference L. Commin, M. Dumont, J.E. Masse, and L. Barrallier, Friction Stir Welding of AZ31 Magnesium Alloy Rolled Sheets: Influence of Processing Parameters, Acta Mater., 2009, 57, p 326–334CrossRef L. Commin, M. Dumont, J.E. Masse, and L. Barrallier, Friction Stir Welding of AZ31 Magnesium Alloy Rolled Sheets: Influence of Processing Parameters, Acta Mater., 2009, 57, p 326–334CrossRef
5.
go back to reference S. Palanivel, A. Arora, K.J. Doherty, and R.S. Mishra, A Framework for Shear Driven Dissolution of Thermally Stable Particles During Friction Stir Welding and Processing, Mater. Sci. Eng. A, 2016, 678, p 308–314CrossRef S. Palanivel, A. Arora, K.J. Doherty, and R.S. Mishra, A Framework for Shear Driven Dissolution of Thermally Stable Particles During Friction Stir Welding and Processing, Mater. Sci. Eng. A, 2016, 678, p 308–314CrossRef
6.
go back to reference S. Mironov, T. Onuma, Y.S. Sato, S. Yoneyama, and H. Kokawa, Tensile Behavior of Friction-Stir Welded AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2017, 679, p 272–281CrossRef S. Mironov, T. Onuma, Y.S. Sato, S. Yoneyama, and H. Kokawa, Tensile Behavior of Friction-Stir Welded AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2017, 679, p 272–281CrossRef
7.
go back to reference S. Yoon, R. Ueji, and H. Fujii, Effect of Rotation Rate on Microstructure and Texture Evolution During Friction Stir Welding of Ti-6Al-4 V Plates, Mater. Charact., 2015, 106, p 352–358CrossRef S. Yoon, R. Ueji, and H. Fujii, Effect of Rotation Rate on Microstructure and Texture Evolution During Friction Stir Welding of Ti-6Al-4 V Plates, Mater. Charact., 2015, 106, p 352–358CrossRef
8.
go back to reference L.H. Wu, B.L. Xiao, D.R. Ni, Z.Y. Ma, X.H. Li, M.J. Fu, and Y.S. Zeng, Achieving Superior Superplasticity from Lamellar Microstructure of a Nugget in a Friction-Stir-Welded Ti-6Al-4 V Joint, Scr. Mater., 2015, 98, p 44–47CrossRef L.H. Wu, B.L. Xiao, D.R. Ni, Z.Y. Ma, X.H. Li, M.J. Fu, and Y.S. Zeng, Achieving Superior Superplasticity from Lamellar Microstructure of a Nugget in a Friction-Stir-Welded Ti-6Al-4 V Joint, Scr. Mater., 2015, 98, p 44–47CrossRef
9.
go back to reference J.J. Shen, H.J. Liu, and F. Cui, Effect of Welding Speed on Microstructure and Mechanical Properties of Friction Stir Welded Copper, Mater. Des., 2010, 31, p 3937–3942CrossRef J.J. Shen, H.J. Liu, and F. Cui, Effect of Welding Speed on Microstructure and Mechanical Properties of Friction Stir Welded Copper, Mater. Des., 2010, 31, p 3937–3942CrossRef
10.
go back to reference T. Sakthivel and J. Mukhopadhyay, Microstructure and Mechanical Properties of Friction Stir Welded Copper, J. Mater. Sci., 2007, 42, p 8126–8129CrossRef T. Sakthivel and J. Mukhopadhyay, Microstructure and Mechanical Properties of Friction Stir Welded Copper, J. Mater. Sci., 2007, 42, p 8126–8129CrossRef
11.
go back to reference A. De, H.K.D.H. Bhadeshia, and T. DebRoy, Friction Stir Welding of Mild Steel: Tool Durability and Steel Microstructure, Mater. Sci. Technol., 2014, 30, p 1050–1056CrossRef A. De, H.K.D.H. Bhadeshia, and T. DebRoy, Friction Stir Welding of Mild Steel: Tool Durability and Steel Microstructure, Mater. Sci. Technol., 2014, 30, p 1050–1056CrossRef
12.
go back to reference MdM Husain, R. Sarkar, T.K. Pal, N. Prabhu, and M. Ghosh, Friction Stir Welding of Steel: Heat Input, Microstructure, and Mechanical Property Co-relation, J. Mater. Eng. Perform., 2015, 24, p 3673–3683CrossRef MdM Husain, R. Sarkar, T.K. Pal, N. Prabhu, and M. Ghosh, Friction Stir Welding of Steel: Heat Input, Microstructure, and Mechanical Property Co-relation, J. Mater. Eng. Perform., 2015, 24, p 3673–3683CrossRef
13.
go back to reference H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakat, and K. Nogi, Friction Stir Welding of Carbon Steels, Mater. Sci. Eng., A, 2006, 429, p 50–57CrossRef H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakat, and K. Nogi, Friction Stir Welding of Carbon Steels, Mater. Sci. Eng., A, 2006, 429, p 50–57CrossRef
14.
go back to reference M.B. Prime, T. Gnäupel-Herold, J.A. Baumann, R.J. Lederich, D.M. Bowden, and R.J. Sebring, Residual Stress Measurements in a Thick, Dissimilar Aluminum Alloy Friction Stir Weld, Acta Mater., 2006, 54, p 4013–4021CrossRef M.B. Prime, T. Gnäupel-Herold, J.A. Baumann, R.J. Lederich, D.M. Bowden, and R.J. Sebring, Residual Stress Measurements in a Thick, Dissimilar Aluminum Alloy Friction Stir Weld, Acta Mater., 2006, 54, p 4013–4021CrossRef
15.
go back to reference W.B. Lee, Y.M. Yeon, and S.B. Jung, The Joint Properties of Dissimilar Formed Al Alloys by Friction Stir Welding According to the Fixed Location of Materials, Scr. Mater., 2003, 49, p 423–428CrossRef W.B. Lee, Y.M. Yeon, and S.B. Jung, The Joint Properties of Dissimilar Formed Al Alloys by Friction Stir Welding According to the Fixed Location of Materials, Scr. Mater., 2003, 49, p 423–428CrossRef
16.
go back to reference U. Donatus, G.E. Thompson, and X. Zhou, Effect of Prior Sputter Deposition of Pure Aluminium on the Corrosion Behaviour of Anodized Friction Stir Weld of Dissimilar Aluminium Alloys, Scr. Mater., 2016, 123, p 126–129CrossRef U. Donatus, G.E. Thompson, and X. Zhou, Effect of Prior Sputter Deposition of Pure Aluminium on the Corrosion Behaviour of Anodized Friction Stir Weld of Dissimilar Aluminium Alloys, Scr. Mater., 2016, 123, p 126–129CrossRef
17.
go back to reference R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Prog. Mater Sci., 2008, 53, p 980–1023CrossRef R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Prog. Mater Sci., 2008, 53, p 980–1023CrossRef
18.
go back to reference X.C. He, F.S. Gu, and A. Ball, A Review of Numerical Analysis of Friction Stir Welding, Prog. Mater Sci., 2014, 65, p 1–66CrossRef X.C. He, F.S. Gu, and A. Ball, A Review of Numerical Analysis of Friction Stir Welding, Prog. Mater Sci., 2014, 65, p 1–66CrossRef
19.
go back to reference R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy, Scr. Mater., 1999, 42, p 163–168CrossRef R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy, Scr. Mater., 1999, 42, p 163–168CrossRef
20.
go back to reference Z.Y. Ma, R.S. Mishra, and M.W. Mahoney, Superplastic Deformation Behaviour of Friction Stir Processed 7075Al Alloy, Acta Mater, 2002, 50, p 4419–4430CrossRef Z.Y. Ma, R.S. Mishra, and M.W. Mahoney, Superplastic Deformation Behaviour of Friction Stir Processed 7075Al Alloy, Acta Mater, 2002, 50, p 4419–4430CrossRef
21.
go back to reference Z. Zhang and Q. Wu, Numerical Studies of Tool Diameter on Strain Rates, Temperature Rises and Grain Sizes in Friction Stir Welding, J. Mech. Sci. Technol., 2015, 29, p 4121–4128CrossRef Z. Zhang and Q. Wu, Numerical Studies of Tool Diameter on Strain Rates, Temperature Rises and Grain Sizes in Friction Stir Welding, J. Mech. Sci. Technol., 2015, 29, p 4121–4128CrossRef
22.
go back to reference H. Schmidt and J. Hattel, A Local Model for the Thermomechanical Conditions in Friction Stir Welding, Model. Simul. Mater. Sci. Eng., 2005, 13, p 77–93CrossRef H. Schmidt and J. Hattel, A Local Model for the Thermomechanical Conditions in Friction Stir Welding, Model. Simul. Mater. Sci. Eng., 2005, 13, p 77–93CrossRef
23.
go back to reference A. Gerlich, G. Avramovic-Cingara, and T.H. North, Stir Zone Microstructure and Strain Rate During Al 7075-T6 Friction Stir Spot Welding, Metal. Mater. Trans. A, 2006, 37, p 2773–2786CrossRef A. Gerlich, G. Avramovic-Cingara, and T.H. North, Stir Zone Microstructure and Strain Rate During Al 7075-T6 Friction Stir Spot Welding, Metal. Mater. Trans. A, 2006, 37, p 2773–2786CrossRef
24.
go back to reference M. Ghosh, K. Kumar, and R.S. Mishra, Analysis of Microstructural Evolution During Friction Stir Welding of Ultrahigh-Strength Steel, Scr. Mater., 2010, 63, p 851–854CrossRef M. Ghosh, K. Kumar, and R.S. Mishra, Analysis of Microstructural Evolution During Friction Stir Welding of Ultrahigh-Strength Steel, Scr. Mater., 2010, 63, p 851–854CrossRef
25.
go back to reference S. Sabooni, F. Karimzadeh, M.H. Enayati, A.H.W. Ngan, and H. Jabbari, Gas Tungsten Arc Welding and Friction Stir Welding of Ultrafine Grained AISI, 304L Stainless Steel: Microstructural and Mechanical Behavior Characterization, Mater. Charact., 2015, 109, p 138–151CrossRef S. Sabooni, F. Karimzadeh, M.H. Enayati, A.H.W. Ngan, and H. Jabbari, Gas Tungsten Arc Welding and Friction Stir Welding of Ultrafine Grained AISI, 304L Stainless Steel: Microstructural and Mechanical Behavior Characterization, Mater. Charact., 2015, 109, p 138–151CrossRef
26.
go back to reference J.Y. Sheikh-Ahmad, F. Ozturk, F. Jarrar, and Z. Evis, Thermal History and Microstructure During Friction Stir Welding of Al-Mg Alloy, Int. J. Adv. Manuf. Technol., 2016, 86, p 1071–1081CrossRef J.Y. Sheikh-Ahmad, F. Ozturk, F. Jarrar, and Z. Evis, Thermal History and Microstructure During Friction Stir Welding of Al-Mg Alloy, Int. J. Adv. Manuf. Technol., 2016, 86, p 1071–1081CrossRef
27.
go back to reference J.S. Liao, N. Yamamoto, and K. Nakata, Effect of Dispersed Intermetallic Particles on Microstructural Evolution in the Friction Stir Weld of a Fine-Grained Magnesium Alloy, Metal. Mater. Trans. A, 2009, 40, p 2212–2219CrossRef J.S. Liao, N. Yamamoto, and K. Nakata, Effect of Dispersed Intermetallic Particles on Microstructural Evolution in the Friction Stir Weld of a Fine-Grained Magnesium Alloy, Metal. Mater. Trans. A, 2009, 40, p 2212–2219CrossRef
28.
go back to reference Z. Yang, S. Sista, J.W. Elmer, and T. DebRoy, Three Dimensional Monte Carlo Simulation of Grain Growth During GTA Welding of Titanium, Acta Mater., 2000, 48, p 4813–4825CrossRef Z. Yang, S. Sista, J.W. Elmer, and T. DebRoy, Three Dimensional Monte Carlo Simulation of Grain Growth During GTA Welding of Titanium, Acta Mater., 2000, 48, p 4813–4825CrossRef
29.
go back to reference S. Sista, Z. Yang, and T. DebRoy, Three-Dimensional Monte Carlo Simulation of Grain Growth in the Heat-Affected Zone of a 2.25Cr-1Mo Steel Weld, Metal. Mater. Trans. B, 2000, 31, p 529–536CrossRef S. Sista, Z. Yang, and T. DebRoy, Three-Dimensional Monte Carlo Simulation of Grain Growth in the Heat-Affected Zone of a 2.25Cr-1Mo Steel Weld, Metal. Mater. Trans. B, 2000, 31, p 529–536CrossRef
30.
go back to reference S. Sista and T. DebRoy, Three-Dimensional Monte Carlo Simulation of Grain Growth in Zone-Refined Iron, Metal. Mater. Trans. B, 2001, 32, p 1195–1201CrossRef S. Sista and T. DebRoy, Three-Dimensional Monte Carlo Simulation of Grain Growth in Zone-Refined Iron, Metal. Mater. Trans. B, 2001, 32, p 1195–1201CrossRef
31.
go back to reference S. Mishra and T. DebRoy, Measurements and Monte Carlo Simulation of Grain Growth in the Heat-Affected Zone of Ti-6Al-4 V Welds, Acta Mater., 2004, 52, p 1183–1192CrossRef S. Mishra and T. DebRoy, Measurements and Monte Carlo Simulation of Grain Growth in the Heat-Affected Zone of Ti-6Al-4 V Welds, Acta Mater., 2004, 52, p 1183–1192CrossRef
32.
go back to reference Q. Wu and Z. Zhang, Precipitation Induced Grain Growth Simulation in Friction Stir Welding, J. Mater. Eng. Perform., 2017, 26(5), p 2179–2189CrossRef Q. Wu and Z. Zhang, Precipitation Induced Grain Growth Simulation in Friction Stir Welding, J. Mater. Eng. Perform., 2017, 26(5), p 2179–2189CrossRef
33.
go back to reference Z. Zhang, Q. Wu, M. Grujicic, and Z.Y. Wan, Monte Carlo Simulation of Grain Growth and Welding Zones in Friction Stir Welding of AA6082-T6, J. Mater. Sci., 2016, 51, p 1882–1895CrossRef Z. Zhang, Q. Wu, M. Grujicic, and Z.Y. Wan, Monte Carlo Simulation of Grain Growth and Welding Zones in Friction Stir Welding of AA6082-T6, J. Mater. Sci., 2016, 51, p 1882–1895CrossRef
34.
go back to reference M. Grujicic, S. Ramaswami, J.S. Snipes, V. Avuthu, R. Galgalikar, and Z. Zhang, Prediction of the Grain-Microstructure Evolution Within a Friction Stir Welding (FSW) Joint Via the Use of the Monte Carlo Simulation Method, J. Mater. Eng. Perform., 2015, 24, p 3471–3486CrossRef M. Grujicic, S. Ramaswami, J.S. Snipes, V. Avuthu, R. Galgalikar, and Z. Zhang, Prediction of the Grain-Microstructure Evolution Within a Friction Stir Welding (FSW) Joint Via the Use of the Monte Carlo Simulation Method, J. Mater. Eng. Perform., 2015, 24, p 3471–3486CrossRef
35.
go back to reference Z.Y. Wan, Z. Zhang, and X. Zhou, Finite Element Modelling of Grain Growth by Point Tracking Method in Friction Stir Welding of AA6082-T6, Int. J. Adv. Manuf. Technol., 2017, 90(9), p 3567–3574CrossRef Z.Y. Wan, Z. Zhang, and X. Zhou, Finite Element Modelling of Grain Growth by Point Tracking Method in Friction Stir Welding of AA6082-T6, Int. J. Adv. Manuf. Technol., 2017, 90(9), p 3567–3574CrossRef
36.
go back to reference A. Simar, Y. Bréchet, B. de Meester, A. Denquin, and T. Pardoen, Sequential Modeling of Local Precipitation, Strength and Strain Hardening in Friction Stir Welds of an Aluminum Alloy 6005A-T6, Acta Mater., 2007, 55, p 6133–6143CrossRef A. Simar, Y. Bréchet, B. de Meester, A. Denquin, and T. Pardoen, Sequential Modeling of Local Precipitation, Strength and Strain Hardening in Friction Stir Welds of an Aluminum Alloy 6005A-T6, Acta Mater., 2007, 55, p 6133–6143CrossRef
37.
go back to reference C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-cottignies, Quantitative Investigation of Precipitation and Mechanical Behaviour for AA2024 Friction Stir Welds, Acta Mater., 2005, 53, p 2447–2458CrossRef C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-cottignies, Quantitative Investigation of Precipitation and Mechanical Behaviour for AA2024 Friction Stir Welds, Acta Mater., 2005, 53, p 2447–2458CrossRef
38.
go back to reference H.R. Shercliff and M.F. Ashby, A Process Model for Age Hardening of Aluminium Alloys, Acta Metall. Mater., 1990, 38(10), p 1789–1812CrossRef H.R. Shercliff and M.F. Ashby, A Process Model for Age Hardening of Aluminium Alloys, Acta Metall. Mater., 1990, 38(10), p 1789–1812CrossRef
39.
go back to reference O.R. Myhr and Ø. Grong, Process Modelling Applied to 6082-T6 Aluminium Weldments, Acta Metall. Mater., 1991, 39, p 2693–2708CrossRef O.R. Myhr and Ø. Grong, Process Modelling Applied to 6082-T6 Aluminium Weldments, Acta Metall. Mater., 1991, 39, p 2693–2708CrossRef
40.
go back to reference H.R. Shercliff, M.J. Russell, A. Taylor, and T.L. Dickson, Microstructural Modelling in Friction Stir Welding of 2000 Series Aluminium Alloys, Mec. Ind., 2005, 6, p 25–35 H.R. Shercliff, M.J. Russell, A. Taylor, and T.L. Dickson, Microstructural Modelling in Friction Stir Welding of 2000 Series Aluminium Alloys, Mec. Ind., 2005, 6, p 25–35
41.
go back to reference J.D. Robson, N. Kamp, and N.A. Sulliva, Microstructural Modelling for Friction Stir Welding of Aluminium Alloys, Mater. Manuf. Process., 2007, 22(4), p 450–456CrossRef J.D. Robson, N. Kamp, and N.A. Sulliva, Microstructural Modelling for Friction Stir Welding of Aluminium Alloys, Mater. Manuf. Process., 2007, 22(4), p 450–456CrossRef
42.
go back to reference O.R. Myhr and Ø. Grong, Modelling of Non-isothermal Transformations in Alloys Containing a Particle Distribution, Acta Mater., 2000, 48, p 1605–1615CrossRef O.R. Myhr and Ø. Grong, Modelling of Non-isothermal Transformations in Alloys Containing a Particle Distribution, Acta Mater., 2000, 48, p 1605–1615CrossRef
43.
go back to reference R. Wagner and R. Kampmann, Materials Science and Technology—A Comprehensive Treatment, Wiley-VCH, Weinhem, 1991 R. Wagner and R. Kampmann, Materials Science and Technology—A Comprehensive Treatment, Wiley-VCH, Weinhem, 1991
44.
go back to reference L.-E. Lindgren, A. Lundbäck, and M. Fisk, Thermo-Mechanics and Microstructure Evolution in Manufacturing Simulations, J. Therm. Stresses, 2013, 36(6), p 564–588CrossRef L.-E. Lindgren, A. Lundbäck, and M. Fisk, Thermo-Mechanics and Microstructure Evolution in Manufacturing Simulations, J. Therm. Stresses, 2013, 36(6), p 564–588CrossRef
45.
go back to reference L.-E. Lindgren, A. Lundbäck, M. Fisk, R. Pederson, and J. Andersson, Simulation of Additive Manufacturing Using Coupled Constitutive and Microstructure Models, Addit. Manuf., 2016, 12, p 144–158CrossRef L.-E. Lindgren, A. Lundbäck, M. Fisk, R. Pederson, and J. Andersson, Simulation of Additive Manufacturing Using Coupled Constitutive and Microstructure Models, Addit. Manuf., 2016, 12, p 144–158CrossRef
46.
go back to reference B. Lia, Y.F. Shen, L. Luo, and W.Y. Hu, Effects of Processing Variables and Heat Treatments on Al/Ti-6Al-4 V Interface Microstructure of Bimetal Clad-Plate Fabricated Via a Novel Route Employing Friction Stir Lap Welding, J. Alloy. Compd., 2016, 658, p 904–913CrossRef B. Lia, Y.F. Shen, L. Luo, and W.Y. Hu, Effects of Processing Variables and Heat Treatments on Al/Ti-6Al-4 V Interface Microstructure of Bimetal Clad-Plate Fabricated Via a Novel Route Employing Friction Stir Lap Welding, J. Alloy. Compd., 2016, 658, p 904–913CrossRef
47.
go back to reference H. Sidhar and R.S. Mishra, Aging Kinetics of Friction Stir Welded Al-Cu-Li-Mg-Ag and Al-Cu-Li-Mg Alloys, Mater. Des., 2016, 110, p 60–71CrossRef H. Sidhar and R.S. Mishra, Aging Kinetics of Friction Stir Welded Al-Cu-Li-Mg-Ag and Al-Cu-Li-Mg Alloys, Mater. Des., 2016, 110, p 60–71CrossRef
48.
go back to reference M.N. Avettand-Fènoël and R. Taillard, Effect of a Pre or Postweld Heat Treatment on Microstructure and Mechanical Properties of an AA2050 Weld Obtained by SSFSW, Mater. Des., 2016, 89, p 348–361CrossRef M.N. Avettand-Fènoël and R. Taillard, Effect of a Pre or Postweld Heat Treatment on Microstructure and Mechanical Properties of an AA2050 Weld Obtained by SSFSW, Mater. Des., 2016, 89, p 348–361CrossRef
49.
go back to reference R. Citarella, P. Carlone, M. Lepore, and R. Sepe, Hybrid Technique to Assess the Fatigue Performance of Multiple Cracked FSW Joints, Eng. Fract. Mech., 2016, 162, p 38–50CrossRef R. Citarella, P. Carlone, M. Lepore, and R. Sepe, Hybrid Technique to Assess the Fatigue Performance of Multiple Cracked FSW Joints, Eng. Fract. Mech., 2016, 162, p 38–50CrossRef
50.
go back to reference P. Carlone, R. Citarella, M.R. Sonne, and J.H. Hattel, Multiple Crack Growth Prediction in AA2024-T3 Friction Stir Welded Joints, Including Manufacturing Effects, Int. J. Fatigue, 2016, 90, p 69–77CrossRef P. Carlone, R. Citarella, M.R. Sonne, and J.H. Hattel, Multiple Crack Growth Prediction in AA2024-T3 Friction Stir Welded Joints, Including Manufacturing Effects, Int. J. Fatigue, 2016, 90, p 69–77CrossRef
51.
go back to reference M.R. Sonne, C.C. Tutum, J.H. Hattel, A. Simar, and B.D. Meester, The Effect of Hardening Laws and Thermal Softening on Modeling Residual Stresses in FSW of Aluminum Alloy 2024-T3, J. Mater. Process. Technol., 2013, 213(3), p 477–486CrossRef M.R. Sonne, C.C. Tutum, J.H. Hattel, A. Simar, and B.D. Meester, The Effect of Hardening Laws and Thermal Softening on Modeling Residual Stresses in FSW of Aluminum Alloy 2024-T3, J. Mater. Process. Technol., 2013, 213(3), p 477–486CrossRef
52.
go back to reference Z. Zhang, P. Ge, and G.Z. Zhao, Numerical Studies of Post Weld Heat Treatment on Residual Stresses in Welded Impeller, Int. J. Press. Vessels Pip., 2017, 153, p 1–14CrossRef Z. Zhang, P. Ge, and G.Z. Zhao, Numerical Studies of Post Weld Heat Treatment on Residual Stresses in Welded Impeller, Int. J. Press. Vessels Pip., 2017, 153, p 1–14CrossRef
53.
go back to reference Z.W. Zhang, Z. Zhang, and H.W. Zhang, Effect of Residual Stress of Friction Stir Welding on Fatigue Life of AA 2024-T351 Joint, Proceed. Inst. Mech. Eng. Part B J. Eng. Manuf., 2015, 229(11), p 2021–2034CrossRef Z.W. Zhang, Z. Zhang, and H.W. Zhang, Effect of Residual Stress of Friction Stir Welding on Fatigue Life of AA 2024-T351 Joint, Proceed. Inst. Mech. Eng. Part B J. Eng. Manuf., 2015, 229(11), p 2021–2034CrossRef
54.
go back to reference Z. Zhang and H.W. Zhang, Numerical Studies of Pre-Heating Time Effect on Temperature and Material Behaviors in Friction Stir Welding Process, Sci. Technol. Weld. Joining, 2007, 12(5), p 436–448CrossRef Z. Zhang and H.W. Zhang, Numerical Studies of Pre-Heating Time Effect on Temperature and Material Behaviors in Friction Stir Welding Process, Sci. Technol. Weld. Joining, 2007, 12(5), p 436–448CrossRef
55.
go back to reference Z. Zhang and J.T. Chen, Computational Investigations on Reliable Finite Element Based Thermo-Mechanical Coupled Simulations of Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2012, 60, p 959–975CrossRef Z. Zhang and J.T. Chen, Computational Investigations on Reliable Finite Element Based Thermo-Mechanical Coupled Simulations of Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2012, 60, p 959–975CrossRef
56.
go back to reference Z. Zhang and H.W. Zhang, Solid Mechanics-Based Eulerian Model of Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2014, 72, p 1647–1653CrossRef Z. Zhang and H.W. Zhang, Solid Mechanics-Based Eulerian Model of Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2014, 72, p 1647–1653CrossRef
57.
go back to reference G. Buffa, J. Hua, R. Shivpuri et al., A Continuum Based Fem Model for Friction Stir Welding—Model Development, Mater. Sci. Eng. A, 2006, 419(1), p 389–396CrossRef G. Buffa, J. Hua, R. Shivpuri et al., A Continuum Based Fem Model for Friction Stir Welding—Model Development, Mater. Sci. Eng. A, 2006, 419(1), p 389–396CrossRef
58.
go back to reference O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu, Finite Element Method: Its Basis and Fundamentals, 6th ed., Elsevier Pre Ltd, Singapore, 2008 O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu, Finite Element Method: Its Basis and Fundamentals, 6th ed., Elsevier Pre Ltd, Singapore, 2008
59.
go back to reference O.C. Zienkiewicz and J.Z. Zhu, A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis, Int. J. Numer. Methods Eng., 1987, 24(2), p 337–357CrossRef O.C. Zienkiewicz and J.Z. Zhu, A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis, Int. J. Numer. Methods Eng., 1987, 24(2), p 337–357CrossRef
60.
go back to reference DEFORM 3D, V6.1 User’s Manual, SFC, Columbus, 2007 DEFORM 3D, V6.1 User’s Manual, SFC, Columbus, 2007
61.
go back to reference D. Carron, P. Bastid, Y. Yin, and R.G. Faulkner, Modelling of Precipitation During Friction Stir Welding of an Al-Mg-Si Alloy, Tech. Mech., 2010, 30(1-3), p 29–44 D. Carron, P. Bastid, Y. Yin, and R.G. Faulkner, Modelling of Precipitation During Friction Stir Welding of an Al-Mg-Si Alloy, Tech. Mech., 2010, 30(1-3), p 29–44
62.
go back to reference O.R. Myhr, Ø. Grong, and S.J. Andersen, Modelling of the Age Hardening Behaviour of Al-Mg-Si Alloys, Acta Mater., 2001, 49(1), p 65–75CrossRef O.R. Myhr, Ø. Grong, and S.J. Andersen, Modelling of the Age Hardening Behaviour of Al-Mg-Si Alloys, Acta Mater., 2001, 49(1), p 65–75CrossRef
63.
go back to reference D. Umbrello, J. Hua, and R. Shivpuri, Hardness-Based Flow Stress and Fracture Models for Numerical Simulation of Hard Machining AISI, 52100 Bearing Steel, Mater. Sci. Eng. A, 2004, 374, p 90–100CrossRef D. Umbrello, J. Hua, and R. Shivpuri, Hardness-Based Flow Stress and Fracture Models for Numerical Simulation of Hard Machining AISI, 52100 Bearing Steel, Mater. Sci. Eng. A, 2004, 374, p 90–100CrossRef
64.
go back to reference M.Y. He, G.R. Odette, T. Yamamoto, and D. Klingensmith, A Universal Relationship Between Indentation Hardness and Flow Stress, J. Nucl. Mater., 2007, 367-370, p 556–560CrossRef M.Y. He, G.R. Odette, T. Yamamoto, and D. Klingensmith, A Universal Relationship Between Indentation Hardness and Flow Stress, J. Nucl. Mater., 2007, 367-370, p 556–560CrossRef
65.
go back to reference O.R. Myhr, Ø. Grong, H.G. Fjær, and C.D. Marioara, Modelling of the Microstructure and Strength Evolution in Al-Mg-Si Alloys During Multistage Thermal Processing, Acta Mater., 2004, 52, p 4997–5008CrossRef O.R. Myhr, Ø. Grong, H.G. Fjær, and C.D. Marioara, Modelling of the Microstructure and Strength Evolution in Al-Mg-Si Alloys During Multistage Thermal Processing, Acta Mater., 2004, 52, p 4997–5008CrossRef
66.
go back to reference Z. Zhang and Z.Y. Wan, Predictions of Tool Forces in Friction Stir Welding of AZ91 Magnesium Alloy, Sci. Technol. Weld. Join, 2012, 17(6), p 495–500 Z. Zhang and Z.Y. Wan, Predictions of Tool Forces in Friction Stir Welding of AZ91 Magnesium Alloy, Sci. Technol. Weld. Join, 2012, 17(6), p 495–500
Metadata
Title
The Simulation of Precipitation Evolutions and Mechanical Properties in Friction Stir Welding with Post-Weld Heat Treatments
Authors
Z. Zhang
Z. Y. Wan
L.-E. Lindgren
Z. J. Tan
X. Zhou
Publication date
28-11-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 12/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-3069-9

Other articles of this Issue 12/2017

Journal of Materials Engineering and Performance 12/2017 Go to the issue

Premium Partners