Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 12/2017

26-10-2017

Dislocation and Structural Studies at Metal–Metallic Glass Interface at Low Temperature

Authors: Pradeep Gupta, Natraj Yedla

Published in: Journal of Materials Engineering and Performance | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, molecular dynamics (MD) simulation deformation studies on the Al (metal)–Cu50Zr50 (metallic glass) model interface is carried out based on cohesive zone model. The interface is subjected to mode-I loading at a strain rate of 109 s−1 and temperature of 100 K. The dislocations reactions and evolution of dislocation densities during the deformation have been investigated. Atomic interactions between Al, Cu and Zr atoms are modeled using EAM (embedded atom method) potential, and a timestep of 0.002 ps is used for performing the MD simulations. A circular crack and rectangular notch are introduced at the interface to investigate the effect on the deformation behavior and fracture. Further, scale size effect is also investigated. The structural changes and evolution of dislocation density are also examined. It is found that the dominant deformation mechanism is by Shockley partial dislocation nucleation. Amorphization is observed in the Al regions close to the interface and occurs at a lower strain in the presence of a crack. The total dislocation density is found to be maximum after the first yield in both the perfect and defect interface models and is highest in the case of perfect interface with a density of 6.31 × 1017 m−2. In the perfect and circular crack defect interface models, it is observed that the fraction of Shockley partial dislocation density decreases, whereas that of strain rod dislocations increases with increase in strain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference S. Scudino, G. Liu, K.G.G. Prashanth, B. Bartusch, K.B. Surreddi, B.S. Murty et al., Mechanical Properties of Al-Based Metal Matrix Composites Reinforced with Zr-Based Glassy Particles Produced by Powder Metallurgy, Acta Mater., 2009, 57, p 2029–2039. doi:10.1016/j.actamat.2009.01.010 CrossRef S. Scudino, G. Liu, K.G.G. Prashanth, B. Bartusch, K.B. Surreddi, B.S. Murty et al., Mechanical Properties of Al-Based Metal Matrix Composites Reinforced with Zr-Based Glassy Particles Produced by Powder Metallurgy, Acta Mater., 2009, 57, p 2029–2039. doi:10.​1016/​j.​actamat.​2009.​01.​010 CrossRef
3.
go back to reference S. Scudino, K.B. Surreddi, S. Sager, M. Sakaliyska, J.S. Kim, W. Löser et al., Production and Mechanical Properties of Metallic Glass-Reinforced Al-Based Metal Matrix Composites, J. Mater. Sci., 2008, 43, p 4518–4526. doi:10.1007/s10853-008-2647-5 CrossRef S. Scudino, K.B. Surreddi, S. Sager, M. Sakaliyska, J.S. Kim, W. Löser et al., Production and Mechanical Properties of Metallic Glass-Reinforced Al-Based Metal Matrix Composites, J. Mater. Sci., 2008, 43, p 4518–4526. doi:10.​1007/​s10853-008-2647-5 CrossRef
4.
5.
go back to reference D.V. Dudina, K. Georgarakis, M. Aljerf, Y. Li, M. Braccini, A.R. Yavari et al., Cu-Based Metallic Glass Particle Additions to Significantly Improve Overall Compressive Properties of an Al Alloy, Compos. Part A Appl. Sci. Manuf., 2010, 41, p 1551–1557. doi:10.1016/j.compositesa.2010.07.004 CrossRef D.V. Dudina, K. Georgarakis, M. Aljerf, Y. Li, M. Braccini, A.R. Yavari et al., Cu-Based Metallic Glass Particle Additions to Significantly Improve Overall Compressive Properties of an Al Alloy, Compos. Part A Appl. Sci. Manuf., 2010, 41, p 1551–1557. doi:10.​1016/​j.​compositesa.​2010.​07.​004 CrossRef
8.
go back to reference S. Li, Y. Su, X. Zhu, H. Jin, Q. Ouyang, and D. Zhang, Enhanced Mechanical Behavior and Fabrication of Silicon Carbide Particles Covered by In-situ Carbon Nanotube Reinforced 6061 Aluminum Matrix Composites, Mater. Des., 2016, 107, p 130–138. doi:10.1016/j.matdes.2016.06.021 CrossRef S. Li, Y. Su, X. Zhu, H. Jin, Q. Ouyang, and D. Zhang, Enhanced Mechanical Behavior and Fabrication of Silicon Carbide Particles Covered by In-situ Carbon Nanotube Reinforced 6061 Aluminum Matrix Composites, Mater. Des., 2016, 107, p 130–138. doi:10.​1016/​j.​matdes.​2016.​06.​021 CrossRef
9.
12.
go back to reference C.R. Dandekar and Y.C. Shin, Effect of Porosity on the Interface Behavior of an Al2O3–Aluminum Composite: A Molecular Dynamics Study, Compos. Sci. Technol., 2011, 71, p 350–356CrossRef C.R. Dandekar and Y.C. Shin, Effect of Porosity on the Interface Behavior of an Al2O3–Aluminum Composite: A Molecular Dynamics Study, Compos. Sci. Technol., 2011, 71, p 350–356CrossRef
15.
go back to reference D.S. Dugdale, Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids, 1960, 8, p 100–104CrossRef D.S. Dugdale, Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids, 1960, 8, p 100–104CrossRef
16.
go back to reference G.I. Barenblatt, The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Adv. Appl. Mech., 1962, 7, p 55–129CrossRef G.I. Barenblatt, The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Adv. Appl. Mech., 1962, 7, p 55–129CrossRef
20.
go back to reference W.-P. Wu, N.-L. Li, and Y.-L. Li, Molecular Dynamics-Based Cohesive Zone Representation of Microstructure and Stress Evolutions of Nickel Intergranular Fracture Process: Effects of Temperature, Comput. Mater. Sci., 2016, 113, p 203–210. doi:10.1016/j.commatsci.2015.12.001 CrossRef W.-P. Wu, N.-L. Li, and Y.-L. Li, Molecular Dynamics-Based Cohesive Zone Representation of Microstructure and Stress Evolutions of Nickel Intergranular Fracture Process: Effects of Temperature, Comput. Mater. Sci., 2016, 113, p 203–210. doi:10.​1016/​j.​commatsci.​2015.​12.​001 CrossRef
22.
go back to reference P. Gupta, S. Pal, and N. Yedla, Molecular Dynamics Based Cohesive Zone Modeling of Al (Metal)–Cu50Zr50 (Metallic Glass) Interfacial Mechanical Behavior and Investigation of Dissipative Mechanisms, Mater. Des., 2016, 105, p 41–50CrossRef P. Gupta, S. Pal, and N. Yedla, Molecular Dynamics Based Cohesive Zone Modeling of Al (Metal)–Cu50Zr50 (Metallic Glass) Interfacial Mechanical Behavior and Investigation of Dissipative Mechanisms, Mater. Des., 2016, 105, p 41–50CrossRef
23.
go back to reference S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 117, 1–19 (1995). file:///D:/ash/aswin-new/files/715/Plimpton - 1995 - Fast Parallel Algorithms for Short-Range Molecular.pdf S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 117, 1–19 (1995). file:///D:/ash/aswin-new/files/715/Plimpton - 1995 - Fast Parallel Algorithms for Short-Range Molecular.pdf
25.
go back to reference R. Komanduri, N. Chandrasekaran, and L.M. Raff, Molecular Dynamics (MD) Simulation of Uniaxial Tension of Some Single-Crystal Cubic Metals at Nanolevel, Int. J. Mech. Sci., 2001, 43, p 2237–2260. doi:10.1016/S0020-7403(01)00043-1 CrossRef R. Komanduri, N. Chandrasekaran, and L.M. Raff, Molecular Dynamics (MD) Simulation of Uniaxial Tension of Some Single-Crystal Cubic Metals at Nanolevel, Int. J. Mech. Sci., 2001, 43, p 2237–2260. doi:10.​1016/​S0020-7403(01)00043-1 CrossRef
26.
go back to reference Z.S. Pereira and E.Z. Da Silva, Cold Welding of Gold and Silver Nanowires: A Molecular Dynamics Study, J. Phys. Chem. C, 2011, 115, p 22870–22876CrossRef Z.S. Pereira and E.Z. Da Silva, Cold Welding of Gold and Silver Nanowires: A Molecular Dynamics Study, J. Phys. Chem. C, 2011, 115, p 22870–22876CrossRef
27.
go back to reference X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Misfit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers, Phys. Rev. B, 2004, 69, p 144113CrossRef X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Misfit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers, Phys. Rev. B, 2004, 69, p 144113CrossRef
28.
go back to reference L. Yang, G.-Q. Guo, L.-Y. Chen, S.-H. Wei, J.-Z. Jiang, and X.-D. Wang, Atomic Structure in Al-Doped Multicomponent Bulk Metallic Glass, Scr. Mater., 2010, 63, p 879–882CrossRef L. Yang, G.-Q. Guo, L.-Y. Chen, S.-H. Wei, J.-Z. Jiang, and X.-D. Wang, Atomic Structure in Al-Doped Multicomponent Bulk Metallic Glass, Scr. Mater., 2010, 63, p 879–882CrossRef
29.
30.
go back to reference S. Nosé, A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Mol. Phys., 1984, 52, p 255–268CrossRef S. Nosé, A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Mol. Phys., 1984, 52, p 255–268CrossRef
31.
go back to reference W.G. Hoover, Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 1985, 31, p 1695CrossRef W.G. Hoover, Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 1985, 31, p 1695CrossRef
32.
go back to reference V.K. Sutrakar and D.R. Mahapatra, Effects of Isothermal and Adiabatic Thermal Loadings on Size and Strain Rate Dependence of Copper Nanowire, Def. Sci. J., 2009, 59, p 252CrossRef V.K. Sutrakar and D.R. Mahapatra, Effects of Isothermal and Adiabatic Thermal Loadings on Size and Strain Rate Dependence of Copper Nanowire, Def. Sci. J., 2009, 59, p 252CrossRef
33.
go back to reference J. Diao, K. Gall, M.L. Dunn, and J.A. Zimmerman, Atomistic Simulations of the Yielding of Gold Nanowires, Acta Mater., 2006, 54, p 643–653CrossRef J. Diao, K. Gall, M.L. Dunn, and J.A. Zimmerman, Atomistic Simulations of the Yielding of Gold Nanowires, Acta Mater., 2006, 54, p 643–653CrossRef
34.
36.
go back to reference A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Model. Simul. Mater. Sci. Eng., 2012, 20, p 85007CrossRef A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Model. Simul. Mater. Sci. Eng., 2012, 20, p 85007CrossRef
38.
go back to reference S.J.A. Koh, H.P. Lee, C. Lu, and Q.H. Cheng, Molecular Dynamics Simulation of a Solid Platinum Nanowire Under Uniaxial Tensile Strain: Temperature and Strain-Rate Effects, Phys. Rev. B, 2005, 72, p 85414CrossRef S.J.A. Koh, H.P. Lee, C. Lu, and Q.H. Cheng, Molecular Dynamics Simulation of a Solid Platinum Nanowire Under Uniaxial Tensile Strain: Temperature and Strain-Rate Effects, Phys. Rev. B, 2005, 72, p 85414CrossRef
39.
go back to reference P. Wang, W. Chou, A. Nie, Y. Huang, H. Yao, and H. Wang, Molecular Dynamics Simulation on Deformation Mechanisms in Body-Centered-Cubic Molybdenum Nanowires, J. Appl. Phys., 2011, 110, p 93521. doi:10.1063/1.3660251 CrossRef P. Wang, W. Chou, A. Nie, Y. Huang, H. Yao, and H. Wang, Molecular Dynamics Simulation on Deformation Mechanisms in Body-Centered-Cubic Molybdenum Nanowires, J. Appl. Phys., 2011, 110, p 93521. doi:10.​1063/​1.​3660251 CrossRef
41.
go back to reference A.P. Divecha, S.G. Fishman, and S.D. Karmarkar, Silicon Carbide Reinforced Aluminum—A Formable Composite, JOM, 1981, 33, p 12–17CrossRef A.P. Divecha, S.G. Fishman, and S.D. Karmarkar, Silicon Carbide Reinforced Aluminum—A Formable Composite, JOM, 1981, 33, p 12–17CrossRef
42.
go back to reference Y. Zhou, W. Yang, M. Hu, and Z. Yang, The Typical Manners of Dynamic Crack Propagation Along the Metal/Ceramics Interfaces: A Molecular Dynamics Study, Comput. Mater. Sci., 2016, 112, p 27–33CrossRef Y. Zhou, W. Yang, M. Hu, and Z. Yang, The Typical Manners of Dynamic Crack Propagation Along the Metal/Ceramics Interfaces: A Molecular Dynamics Study, Comput. Mater. Sci., 2016, 112, p 27–33CrossRef
43.
go back to reference K.J. Zhao, C.Q. Chen, Y.P. Shen, and T.J. Lu, Molecular Dynamics Study on the Nano-Void Growth in Face-Centered Cubic Single Crystal Copper, Comput. Mater. Sci., 2009, 46, p 749–754CrossRef K.J. Zhao, C.Q. Chen, Y.P. Shen, and T.J. Lu, Molecular Dynamics Study on the Nano-Void Growth in Face-Centered Cubic Single Crystal Copper, Comput. Mater. Sci., 2009, 46, p 749–754CrossRef
44.
go back to reference G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, Vol. 3, McGraw-hill, New York, 1986 G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, Vol. 3, McGraw-hill, New York, 1986
45.
go back to reference V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Dislocation Processes in the Deformation of Nanocrystalline Aluminium by Molecular-Dynamics Simulation, Nat. Mater., 2002, 1, p 45–48. doi:10.1038/nmat700 CrossRef V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Dislocation Processes in the Deformation of Nanocrystalline Aluminium by Molecular-Dynamics Simulation, Nat. Mater., 2002, 1, p 45–48. doi:10.​1038/​nmat700 CrossRef
47.
go back to reference V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, Dislocation–Dislocation and Dislocation–Twin Reactions In Nanocrystalline Al by Molecular Dynamics Simulation, Acta Mater., 2003, 51, p 4135–4147. doi:10.1016/S1359-6454(03)00232-5 CrossRef V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, Dislocation–Dislocation and Dislocation–Twin Reactions In Nanocrystalline Al by Molecular Dynamics Simulation, Acta Mater., 2003, 51, p 4135–4147. doi:10.​1016/​S1359-6454(03)00232-5 CrossRef
49.
go back to reference T. Kadoyoshi, H. Kaburaki, F. Shimizu, H. Kimizuka, S. Jitsukawa, and J. Li, Molecular Dynamics Study on the Formation of Stacking Fault Tetrahedra and Unfaulting of Frank Loops in fcc Metals, Acta Mater., 2007, 55, p 3073–3080. doi:10.1016/j.actamat.2007.01.010 CrossRef T. Kadoyoshi, H. Kaburaki, F. Shimizu, H. Kimizuka, S. Jitsukawa, and J. Li, Molecular Dynamics Study on the Formation of Stacking Fault Tetrahedra and Unfaulting of Frank Loops in fcc Metals, Acta Mater., 2007, 55, p 3073–3080. doi:10.​1016/​j.​actamat.​2007.​01.​010 CrossRef
53.
go back to reference S.H. Oh, M. Legros, D. Kiener, and G. Dehm, In Situ Observation of Dislocation Nucleation and Escape in a Submicrometre Aluminium Single Crystal, Nat. Mater., 2009, 8, p 95–100. doi:10.1038/nmat2370 CrossRef S.H. Oh, M. Legros, D. Kiener, and G. Dehm, In Situ Observation of Dislocation Nucleation and Escape in a Submicrometre Aluminium Single Crystal, Nat. Mater., 2009, 8, p 95–100. doi:10.​1038/​nmat2370 CrossRef
54.
go back to reference P. Li, Y. Yang, X. Luo, N. Jin, G. Liu, and Z. Feng, Effect of Rate Dependence of Crack Propagation Processes on Amorphization in Al, Mater. Sci. Eng., A, 2017, 684, p 71–77CrossRef P. Li, Y. Yang, X. Luo, N. Jin, G. Liu, and Z. Feng, Effect of Rate Dependence of Crack Propagation Processes on Amorphization in Al, Mater. Sci. Eng., A, 2017, 684, p 71–77CrossRef
55.
go back to reference S. Huang, S. Zhang, T. Belytschko, S.S. Terdalkar, and T. Zhu, Mechanics of Nanocrack: Fracture, Dislocation Emission, and Amorphization, J. Mech. Phys. Solids, 2009, 57, p 840–850CrossRef S. Huang, S. Zhang, T. Belytschko, S.S. Terdalkar, and T. Zhu, Mechanics of Nanocrack: Fracture, Dislocation Emission, and Amorphization, J. Mech. Phys. Solids, 2009, 57, p 840–850CrossRef
Metadata
Title
Dislocation and Structural Studies at Metal–Metallic Glass Interface at Low Temperature
Authors
Pradeep Gupta
Natraj Yedla
Publication date
26-10-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 12/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-3026-7

Other articles of this Issue 12/2017

Journal of Materials Engineering and Performance 12/2017 Go to the issue

Premium Partners