Skip to main content
Top
Published in: Journal of Polymer Research 6/2020

01-06-2020 | ORIGINAL PAPER

The thiol group modified multi-wall carbon nanotubes to enhance the dielectric properties of polystyrene

Authors: Xuanchen Zhao, Yuanjing Bi, Shixin Song, Chuang Liu, Xue Lv, Shulin Sun

Published in: Journal of Polymer Research | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The researches on how to prepare the polymer composites with high dielectric constant (high-k) and low dielectric loss were important for the rapid development of electronic industry. In this paper, by using silane coupling agent, the multi-wall carbon nanotubes (MWCNTs) could graft the thiol groups with high chain transfer constant on the surface, which made the polystyrene (PS) chain coat more efficiently on the surface of MWCNTs to form the core-shell structure. 1H NMR, TGA and TEM results, showed polystyrene were grafted on the surface of MWCNTs. The grafted PS could reduce the dielectric loss of composite materials and promote the dispersion of the coating MWCNTs in the matrix. In addition, the insulating layer effectively improved the interaction between the MWCNTs and PS matrix, which strengthened the binding force between the filler and matrix, resulting in the increase of the thermal stability of the PS composites. In terms of AC conductivity, the insulating layer could effectively prevent the contact between adjacent MWCNTs from forming a complete conducting network, which inhibited the generation of leakage current. Therefore, compared with untreated multi-wall carbon nanotubes/polystyrene composites, the above composites had excellent dielectric properties with high dielectric constant (214) and low dielectric loss (2.23) at low CNTs mass fraction (4 wt%).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rahaman M, Thomas SP, Hussein IA, De S (2013) Dependence of electrical properties of polyethylene nanocomposites on aspect ratio of carbon nanotubes. Polym Compos 34(4):494–499CrossRef Rahaman M, Thomas SP, Hussein IA, De S (2013) Dependence of electrical properties of polyethylene nanocomposites on aspect ratio of carbon nanotubes. Polym Compos 34(4):494–499CrossRef
2.
go back to reference Brosseau C (2011) Emerging technologies of plastic carbon nanoelectronics: a review. Surf Coat Technol 206(4):753–758CrossRef Brosseau C (2011) Emerging technologies of plastic carbon nanoelectronics: a review. Surf Coat Technol 206(4):753–758CrossRef
3.
go back to reference Wilson SA, Jourdain RP, Zhang Q, Dorey RA, Bowen CR, Willander M, Wahab QU, Al-hilli SM, Nur O, Quandt E (2007) New materials for micro-scale sensors and actuators: an engineering review. Mater. Sci. Eng.: R: Reports 56(1–6):1–129CrossRef Wilson SA, Jourdain RP, Zhang Q, Dorey RA, Bowen CR, Willander M, Wahab QU, Al-hilli SM, Nur O, Quandt E (2007) New materials for micro-scale sensors and actuators: an engineering review. Mater. Sci. Eng.: R: Reports 56(1–6):1–129CrossRef
4.
go back to reference Ortiz RP, Facchetti A, Marks TJ (2009) High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem Rev 110(1):205–239CrossRef Ortiz RP, Facchetti A, Marks TJ (2009) High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem Rev 110(1):205–239CrossRef
5.
go back to reference Balberg I, Azulay D, Toker D, Millo O (2004) Percolation and tunneling in composite materials. Int J Mod Phys B 18(15):2091–2121CrossRef Balberg I, Azulay D, Toker D, Millo O (2004) Percolation and tunneling in composite materials. Int J Mod Phys B 18(15):2091–2121CrossRef
6.
go back to reference Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19(6):852–857CrossRef Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19(6):852–857CrossRef
7.
go back to reference Wang L, Dang Z-M (2005) Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl Phys Lett 87(4):042903CrossRef Wang L, Dang Z-M (2005) Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl Phys Lett 87(4):042903CrossRef
8.
go back to reference Xie L, Huang X, Huang Y, Ke Y, Jiang P (2013) Core@double-Shell structured BaTiO3–polymer Nanocomposites with high dielectric constant and low dielectric loss for energy storage application. J Phys Chem C 117(44):22525–22537CrossRef Xie L, Huang X, Huang Y, Ke Y, Jiang P (2013) Core@double-Shell structured BaTiO3–polymer Nanocomposites with high dielectric constant and low dielectric loss for energy storage application. J Phys Chem C 117(44):22525–22537CrossRef
9.
go back to reference Xia W, Zhuo X, Fei W, Zhang Z (2012) Electrical energy density and dielectric properties of poly (vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO 3 nanocomposites. Ceram Int 38(2):1071–1075CrossRef Xia W, Zhuo X, Fei W, Zhang Z (2012) Electrical energy density and dielectric properties of poly (vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO 3 nanocomposites. Ceram Int 38(2):1071–1075CrossRef
10.
go back to reference Nan CW, Shen Y, Jing M (2010) Physical properties of composites near percolation. Annu Rev Mater Sci 40(1):131–151CrossRef Nan CW, Shen Y, Jing M (2010) Physical properties of composites near percolation. Annu Rev Mater Sci 40(1):131–151CrossRef
11.
go back to reference Song Y, Noh TW, Lee SI, Gaines JR (1986) Experimental study of the three-dimensional ac conductivity and dielectric constant of a conductor-insulator composite near the percolation threshold. Phys. Rev. B: Condens. Matter 33(2):904CrossRef Song Y, Noh TW, Lee SI, Gaines JR (1986) Experimental study of the three-dimensional ac conductivity and dielectric constant of a conductor-insulator composite near the percolation threshold. Phys. Rev. B: Condens. Matter 33(2):904CrossRef
12.
go back to reference Pötschke P, Dudkin SM, Alig I (2003) Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer 44(17):5023–5030CrossRef Pötschke P, Dudkin SM, Alig I (2003) Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer 44(17):5023–5030CrossRef
13.
go back to reference Dang ZM, Yao SH, Xu HP (2007) Effect of tensile strain on morphology and dielectric property in nanotube/polymer nanocomposites. Appl Phys Lett 90(1):150 Dang ZM, Yao SH, Xu HP (2007) Effect of tensile strain on morphology and dielectric property in nanotube/polymer nanocomposites. Appl Phys Lett 90(1):150
14.
go back to reference Lee RS, Chen WH, Lin JH (2011) Polymer-grafted multi-walled carbon nanotubes through surface-initiated ring-opening polymerization and click reaction. Polymer 52(10):2180–2188CrossRef Lee RS, Chen WH, Lin JH (2011) Polymer-grafted multi-walled carbon nanotubes through surface-initiated ring-opening polymerization and click reaction. Polymer 52(10):2180–2188CrossRef
15.
go back to reference Dong B, Su Y, Liu Y, Yuan J, Xu J, Zheng L (2011) Dispersion of carbon nanotubes by carbazole-tailed amphiphilic imidazolium ionic liquids in aqueous solutions. J Colloid Interface Sci 356(1):190–195PubMedCrossRef Dong B, Su Y, Liu Y, Yuan J, Xu J, Zheng L (2011) Dispersion of carbon nanotubes by carbazole-tailed amphiphilic imidazolium ionic liquids in aqueous solutions. J Colloid Interface Sci 356(1):190–195PubMedCrossRef
16.
go back to reference Gunasekaran S, Rajakumar K, Alagar M, Dharmendirakumar M (2014) Siloxane core dianhydride modified ether linked cyclohexyl diamine based multi-walled carbon nanotube reinforced polyimide (MWCNT/PI) nanocomposites. J Polym Res 21(1):342CrossRef Gunasekaran S, Rajakumar K, Alagar M, Dharmendirakumar M (2014) Siloxane core dianhydride modified ether linked cyclohexyl diamine based multi-walled carbon nanotube reinforced polyimide (MWCNT/PI) nanocomposites. J Polym Res 21(1):342CrossRef
17.
go back to reference Hatui G, Das CK (2013) Modification of CNT and its effect on thermo mechanical, morphological as well as rheological properties of polyether imide (PEI)/liquid crystalline polymer (LCP) blend system. J Polym Res 20(2):1–12CrossRef Hatui G, Das CK (2013) Modification of CNT and its effect on thermo mechanical, morphological as well as rheological properties of polyether imide (PEI)/liquid crystalline polymer (LCP) blend system. J Polym Res 20(2):1–12CrossRef
18.
go back to reference Wu G-H, Liu S-Q, Wu X-Y, Ding X-M (2016) Influence of MWCNTs modified by silane coupling agent KH570 on the properties and structure of MWCNTs/PLA composite film. J Polym Res 23(8):155CrossRef Wu G-H, Liu S-Q, Wu X-Y, Ding X-M (2016) Influence of MWCNTs modified by silane coupling agent KH570 on the properties and structure of MWCNTs/PLA composite film. J Polym Res 23(8):155CrossRef
19.
go back to reference Xu W, Zhang Y, Yang G, Yu X, Liu J, Jiang Z (2017) ZnPc-MWCNT/sulfonated poly (ether ether ketone) composites for high-k and electrical energy storage applications. IEEE Trans Dielectr Electr Insul 24(2):720–726CrossRef Xu W, Zhang Y, Yang G, Yu X, Liu J, Jiang Z (2017) ZnPc-MWCNT/sulfonated poly (ether ether ketone) composites for high-k and electrical energy storage applications. IEEE Trans Dielectr Electr Insul 24(2):720–726CrossRef
20.
go back to reference Zhang Y, Huo P, Wang J, Liu X, Rong C, Wang G (2013) Dielectric percolative composites with high dielectric constant and low dielectric loss based on sulfonated poly (aryl ether ketone) and a-MWCNTs coated with polyaniline. J Mater Chem C 1(25):4035–4041CrossRef Zhang Y, Huo P, Wang J, Liu X, Rong C, Wang G (2013) Dielectric percolative composites with high dielectric constant and low dielectric loss based on sulfonated poly (aryl ether ketone) and a-MWCNTs coated with polyaniline. J Mater Chem C 1(25):4035–4041CrossRef
21.
go back to reference Su Y, Ren Y, Chen GX, Li Q (2016) Synthesis of high-k and low dielectric loss polymeric composites from crosslinked divinylbenzene coated carbon nanotubes. Polymer 100:179–187CrossRef Su Y, Ren Y, Chen GX, Li Q (2016) Synthesis of high-k and low dielectric loss polymeric composites from crosslinked divinylbenzene coated carbon nanotubes. Polymer 100:179–187CrossRef
22.
go back to reference S-l L, Dou R, Shao Y, Yin B, Yang M-b (2016) Effect of the MWCNTs selective localization on the dielectric properties for PVDF/PS/HDPE ternary blends with in situ formed core–shell structure. RSC Adv 6(63):58493–58500CrossRef S-l L, Dou R, Shao Y, Yin B, Yang M-b (2016) Effect of the MWCNTs selective localization on the dielectric properties for PVDF/PS/HDPE ternary blends with in situ formed core–shell structure. RSC Adv 6(63):58493–58500CrossRef
23.
go back to reference Göldel A, Kasaliwal G, Pötschke P (2009) Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly (styrene-acrylonitrile). Macromol Rapid Commun 30(6):423–429PubMedCrossRef Göldel A, Kasaliwal G, Pötschke P (2009) Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly (styrene-acrylonitrile). Macromol Rapid Commun 30(6):423–429PubMedCrossRef
24.
go back to reference Zhao X, Zhao J, Cao J-P, Wang D, Hu G-H, Chen F, Dang Z-M (2014) Effect of the selective localization of carbon nanotubes in polystyrene/poly (vinylidene fluoride) blends on their dielectric, thermal, and mechanical properties. Mater Des (1980-2015) 56:807–815CrossRef Zhao X, Zhao J, Cao J-P, Wang D, Hu G-H, Chen F, Dang Z-M (2014) Effect of the selective localization of carbon nanotubes in polystyrene/poly (vinylidene fluoride) blends on their dielectric, thermal, and mechanical properties. Mater Des (1980-2015) 56:807–815CrossRef
25.
go back to reference Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ. Sci. 4(4):1113–1132CrossRef Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ. Sci. 4(4):1113–1132CrossRef
26.
go back to reference Zhang T, Huang W, Zhang N, Huang T, Yang J, Wang Y (2017) Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: high dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene. Eur Polym J 94:196–207CrossRef Zhang T, Huang W, Zhang N, Huang T, Yang J, Wang Y (2017) Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: high dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene. Eur Polym J 94:196–207CrossRef
27.
go back to reference Basu S, Singhi M, Satapathy BK, Fahim M (2013) Dielectric, electrical, and rheological characterization of graphene-filled polystyrene nanocomposites. Polym Compos 34(12):2082–2093CrossRef Basu S, Singhi M, Satapathy BK, Fahim M (2013) Dielectric, electrical, and rheological characterization of graphene-filled polystyrene nanocomposites. Polym Compos 34(12):2082–2093CrossRef
28.
go back to reference Yang K, Huang X, Xie L, Wu C, Jiang P, Tanaka T (2012) Core–shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence. Macromol Rapid Commun 33(22):1921–1926PubMedCrossRef Yang K, Huang X, Xie L, Wu C, Jiang P, Tanaka T (2012) Core–shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence. Macromol Rapid Commun 33(22):1921–1926PubMedCrossRef
29.
go back to reference Yang K, Huang X, Zhu M, Xie L, Tanaka T, Jiang P (2014) Combining RAFT polymerization and thiol–ene click reaction for core–shell structured polymer@ BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability. ACS Appl Mater Interfaces 6(3):1812–1822PubMedCrossRef Yang K, Huang X, Zhu M, Xie L, Tanaka T, Jiang P (2014) Combining RAFT polymerization and thiol–ene click reaction for core–shell structured polymer@ BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability. ACS Appl Mater Interfaces 6(3):1812–1822PubMedCrossRef
30.
go back to reference Yang C, Lin Y, Nan C (2009) Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 47(4):1096–1101CrossRef Yang C, Lin Y, Nan C (2009) Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 47(4):1096–1101CrossRef
31.
go back to reference Zhou F, Liu W, Chen M, Sun DC (2001) A novel way to prepare ultra-thin polymer films through surface radical chain-transfer reaction. Chem Commun 23(23):2446–2447CrossRef Zhou F, Liu W, Chen M, Sun DC (2001) A novel way to prepare ultra-thin polymer films through surface radical chain-transfer reaction. Chem Commun 23(23):2446–2447CrossRef
32.
go back to reference Wang B, Liu L, Huang L, Chi L, Liang G, Li Y, Gu A (2015) Fabrication and origin of high- k carbon nanotube/epoxy composites with low dielectric loss through layer-by-layer casting technique. Carbon 85:28–37CrossRef Wang B, Liu L, Huang L, Chi L, Liang G, Li Y, Gu A (2015) Fabrication and origin of high- k carbon nanotube/epoxy composites with low dielectric loss through layer-by-layer casting technique. Carbon 85:28–37CrossRef
33.
go back to reference Yu S, Zheng W, Yu W, Zhang Y, Jiang Q, Zhao Z (2009) Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42(22):8870–8874CrossRef Yu S, Zheng W, Yu W, Zhang Y, Jiang Q, Zhao Z (2009) Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42(22):8870–8874CrossRef
34.
go back to reference Zhao Z, Zheng W, Yu W, Long B (2009) Electrical conductivity of poly (vinylidene fluoride)/carbon nanotube composites with a spherical substructure. Carbon 47(8):2118–2120CrossRef Zhao Z, Zheng W, Yu W, Long B (2009) Electrical conductivity of poly (vinylidene fluoride)/carbon nanotube composites with a spherical substructure. Carbon 47(8):2118–2120CrossRef
35.
go back to reference Chao W, Huang X, Wu X, Yu J, Xie L, Jiang P (2012) TiO-nanorod decorated carbon nanotubes for high-permittivity and low-dielectric-loss polystyrene composites. Compos Sci Technol 72(4):521–527CrossRef Chao W, Huang X, Wu X, Yu J, Xie L, Jiang P (2012) TiO-nanorod decorated carbon nanotubes for high-permittivity and low-dielectric-loss polystyrene composites. Compos Sci Technol 72(4):521–527CrossRef
Metadata
Title
The thiol group modified multi-wall carbon nanotubes to enhance the dielectric properties of polystyrene
Authors
Xuanchen Zhao
Yuanjing Bi
Shixin Song
Chuang Liu
Xue Lv
Shulin Sun
Publication date
01-06-2020
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 6/2020
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1926-y

Other articles of this Issue 6/2020

Journal of Polymer Research 6/2020 Go to the issue

Premium Partners