Skip to main content
Top

2017 | OriginalPaper | Chapter

3. Thermal-Assisted Machining of Titanium Alloys

Authors : O. A. Shams, A. Pramanik, T. T. Chandratilleke

Published in: Advanced Manufacturing Technologies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Titanium alloys are used in a variety of engineering applications, especially in automotive, aerospace and nuclear fields due to their high strength and excellent corrosion resistance. Nevertheless, titanium alloys have extreme mechanical properties making them very difficult to machine with low thermal conductivity and high chemical reactivity at high temperature. Hence, titanium alloys are required to machine at low cutting speed and feed rate but that increases the cost of production of the components made by these alloys at large. Thermal-assisted machining (TAM) is an effective approach for conventional machining whereby titanium workpiece is locally softened before/during machining with external heating. Localized reduction in workpiece hardness facilitates higher material removal rate (MRR) and extended cutting tool life whilst resulting in better surface finish. This chapter compares and analyzes the merits of different heating techniques for machining of titanium alloys. The techniques under consideration are heating by laser beam, plasma torch heating and heating with the use of induction coil. The laser beam and plasma torch tend to produce more intense localized heating compare to that by induction coil. Moreover, the laser technique offers very controllable process heating compared to other two techniques. Laser-assisted machining (LAM) also largely reduces cutting forces leading to better surface finish. Thus, laser-assisted technique is recognized to be more cost-effective and productive for improving machinability of titanium alloys than rest of the heating techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ezugwu E, Wang Z (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68(3):262–274CrossRef Ezugwu E, Wang Z (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68(3):262–274CrossRef
2.
go back to reference Mantle A, Aspinwall D (1998) Tool life and surface roughness when high speed machining a gamma titanium aluminide, progress of cutting and grinding. In: Fourth international conference on progress of cutting and grinding, Urumqi and Turpan. International Academic Publishers, China, pp 89–94 Mantle A, Aspinwall D (1998) Tool life and surface roughness when high speed machining a gamma titanium aluminide, progress of cutting and grinding. In: Fourth international conference on progress of cutting and grinding, Urumqi and Turpan. International Academic Publishers, China, pp 89–94
3.
go back to reference Abele E, Hölscher R (2014) New technology for high speed cutting of titanium alloys. In: New production technologies in aerospace industry. Springer, New York, pp 75–81 Abele E, Hölscher R (2014) New technology for high speed cutting of titanium alloys. In: New production technologies in aerospace industry. Springer, New York, pp 75–81
4.
go back to reference Ezugwu E (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tools Manuf 45(12):1353–1367CrossRef Ezugwu E (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tools Manuf 45(12):1353–1367CrossRef
5.
go back to reference Veiga C, Davim J, Loureiro A (2013) Review on machinability of titanium alloys: the process perspective. Rev Adv Mater Sci 34(2):148–164 Veiga C, Davim J, Loureiro A (2013) Review on machinability of titanium alloys: the process perspective. Rev Adv Mater Sci 34(2):148–164
6.
go back to reference Pramanik A, Littlefair G (2015) Machining of titanium alloy (Ti-6Al-4V)—theory to application. Mach Sci Technol 19(1):1–49CrossRef Pramanik A, Littlefair G (2015) Machining of titanium alloy (Ti-6Al-4V)—theory to application. Mach Sci Technol 19(1):1–49CrossRef
7.
8.
go back to reference Verma DRSV et al (2003) Effect of pre-drilled holes on tool life in turning of aerospace titanium alloys. In: Proceedings of the national conference on advances in manufacturing system, Production Engineering Department, Jadavpur University, Kolkata, India, pp 42–47 Verma DRSV et al (2003) Effect of pre-drilled holes on tool life in turning of aerospace titanium alloys. In: Proceedings of the national conference on advances in manufacturing system, Production Engineering Department, Jadavpur University, Kolkata, India, pp 42–47
9.
go back to reference Dornfeld D et al (1999) Drilling burr formation in titanium alloy, Ti-6AI-4V. CIRP Ann Manuf Technol 48(1):73–76CrossRef Dornfeld D et al (1999) Drilling burr formation in titanium alloy, Ti-6AI-4V. CIRP Ann Manuf Technol 48(1):73–76CrossRef
10.
go back to reference Oosthuizen GA et al (2010) A review of the machinability of titanium alloys. R&D J S Afr Inst Mech Eng 26:43–52 Oosthuizen GA et al (2010) A review of the machinability of titanium alloys. R&D J S Afr Inst Mech Eng 26:43–52
11.
go back to reference Ezugwu E, Bonney J, Yamane Y (2003) An overview of the machinability of aeroengine alloys. J Mater Process Technol 134(2):233–253CrossRef Ezugwu E, Bonney J, Yamane Y (2003) An overview of the machinability of aeroengine alloys. J Mater Process Technol 134(2):233–253CrossRef
12.
go back to reference Gupta K, Laubscher RF (2016) Sustainable machining of titanium alloys: a critical review. Proc Inst Mech Eng Part B J Eng Manuf, p 0954405416634278 Gupta K, Laubscher RF (2016) Sustainable machining of titanium alloys: a critical review. Proc Inst Mech Eng Part B J Eng Manuf, p 0954405416634278
13.
go back to reference Dandekar CR, Shin YC, Barnes J (2010) Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining. Int J Mach Tools Manuf 50(2):174–182CrossRef Dandekar CR, Shin YC, Barnes J (2010) Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining. Int J Mach Tools Manuf 50(2):174–182CrossRef
14.
go back to reference Khanna N et al (2012) Effect of heat treatment conditions on the machinability of Ti64 and Ti54M alloys. Procedia CIRP 1:477–482CrossRef Khanna N et al (2012) Effect of heat treatment conditions on the machinability of Ti64 and Ti54M alloys. Procedia CIRP 1:477–482CrossRef
15.
go back to reference Pramanik A (2014) Problems and solutions in machining of titanium alloys. Int J Adv Manuf Technol 70(5–8):919–928CrossRef Pramanik A (2014) Problems and solutions in machining of titanium alloys. Int J Adv Manuf Technol 70(5–8):919–928CrossRef
16.
go back to reference Brecher C et al (2011) Laser-assisted milling of advanced materials. Phys Procedia 12:599–606CrossRef Brecher C et al (2011) Laser-assisted milling of advanced materials. Phys Procedia 12:599–606CrossRef
17.
go back to reference Przestacki D, Jankowiak M (2014) Surface roughness analysis after laser assisted machining of hard to cut materials. J Phy Conf Ser (IOP Publishing) Przestacki D, Jankowiak M (2014) Surface roughness analysis after laser assisted machining of hard to cut materials. J Phy Conf Ser (IOP Publishing)
18.
go back to reference Ginta TL, Amin AN (2010) Machinability improvement in end milling titanium alloy TI-6AL-4V, vol 3, pp 25–33 Ginta TL, Amin AN (2010) Machinability improvement in end milling titanium alloy TI-6AL-4V, vol 3, pp 25–33
19.
go back to reference Krabacher EJ, Merchant ME (1951) Basic factor of hot machining of metals. J Eng Ind 73:761–776 Krabacher EJ, Merchant ME (1951) Basic factor of hot machining of metals. J Eng Ind 73:761–776
20.
go back to reference Pfefferkorn FE et al (2009) A metric for defining the energy efficiency of thermally assisted machining. Int J Mach Tools Manuf 49(5):357–365CrossRef Pfefferkorn FE et al (2009) A metric for defining the energy efficiency of thermally assisted machining. Int J Mach Tools Manuf 49(5):357–365CrossRef
21.
go back to reference Radovanovic MR, Dašić PV (2006) Laser assisted turning. In: Research and development in mechanical industry, RaDMI 2006, Budva, Montenegro, pp 312–316 Radovanovic MR, Dašić PV (2006) Laser assisted turning. In: Research and development in mechanical industry, RaDMI 2006, Budva, Montenegro, pp 312–316
22.
go back to reference Shin YC (2011) LAM benefits a wide range of difficult-to-machine materials. J Ind Laser Solut Manuf Shin YC (2011) LAM benefits a wide range of difficult-to-machine materials. J Ind Laser Solut Manuf
23.
go back to reference Pentland W, Mehl C, Wennbery J (1960) Hot machining. Am Mach Metalwork Manuf 1:117–132 Pentland W, Mehl C, Wennbery J (1960) Hot machining. Am Mach Metalwork Manuf 1:117–132
24.
go back to reference Madhavulu G, Ahmed B (1994) Hot machining process for improved metal removal rates in turning operations. J Mater Process Technol 44(3):199–206CrossRef Madhavulu G, Ahmed B (1994) Hot machining process for improved metal removal rates in turning operations. J Mater Process Technol 44(3):199–206CrossRef
25.
go back to reference Çakır O, Altan E (2008) Hot machining of high manganese steel: a review. In: Trends in the development of machinery and associated technology, Istanbul, Turkey, pp 105–108 Çakır O, Altan E (2008) Hot machining of high manganese steel: a review. In: Trends in the development of machinery and associated technology, Istanbul, Turkey, pp 105–108
26.
go back to reference Özler L, Inan A, Özel C (2001) Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel. Int J Mach Tools Manuf 41(2):163–172CrossRef Özler L, Inan A, Özel C (2001) Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel. Int J Mach Tools Manuf 41(2):163–172CrossRef
27.
go back to reference Rajopadhye RD, Telsang MT, Dhole NS (2009) Experimental setup for hot machining process to increase tool life with torch flame. In: Second international conference on emerging trends in engineering (SICETE), Nagpur, Maharashtra, India, pp 58–62 Rajopadhye RD, Telsang MT, Dhole NS (2009) Experimental setup for hot machining process to increase tool life with torch flame. In: Second international conference on emerging trends in engineering (SICETE), Nagpur, Maharashtra, India, pp 58–62
28.
go back to reference Tosun N, Ozler L (2004) Optimisation for hot turning operations with multiple performance characteristics. Int J Adv Manuf Technol 23(11–12):777–782 Tosun N, Ozler L (2004) Optimisation for hot turning operations with multiple performance characteristics. Int J Adv Manuf Technol 23(11–12):777–782
29.
go back to reference Rebro PA et al (2002) Comparative assessment of laser-assisted machining for various ceramics, vol 30. Transactions of North American Manufacturing Research Institution, pp 153–160 Rebro PA et al (2002) Comparative assessment of laser-assisted machining for various ceramics, vol 30. Transactions of North American Manufacturing Research Institution, pp 153–160
30.
go back to reference Bermingham M, Palanisamy S, Dargusch M (2012) Understanding the tool wear mechanism during thermally assisted machining Ti-6Al-4V. Int J Mach Tools Manuf 62:76–87CrossRef Bermingham M, Palanisamy S, Dargusch M (2012) Understanding the tool wear mechanism during thermally assisted machining Ti-6Al-4V. Int J Mach Tools Manuf 62:76–87CrossRef
31.
go back to reference Amin A, Abdelgadir M (2003) The effect of preheating of work material on chatter during end milling of medium carbon steel performed on a vertical machining center (VMC). J Manuf Sci Eng 125(4):674–680CrossRef Amin A, Abdelgadir M (2003) The effect of preheating of work material on chatter during end milling of medium carbon steel performed on a vertical machining center (VMC). J Manuf Sci Eng 125(4):674–680CrossRef
32.
go back to reference Ginta TL et al (2009) Improved tool life in end milling Ti-6Al-4V through workpiece preheating. Eur J Sci Res 27(3):384–391 Ginta TL et al (2009) Improved tool life in end milling Ti-6Al-4V through workpiece preheating. Eur J Sci Res 27(3):384–391
33.
go back to reference Lajis MA et al (2009) Hot machining of hardened steels with coated carbide inserts. Am J Eng Appl Sci 2(2):421–427CrossRef Lajis MA et al (2009) Hot machining of hardened steels with coated carbide inserts. Am J Eng Appl Sci 2(2):421–427CrossRef
34.
go back to reference Amin AN et al (2008) Effects of workpiece preheating on surface roughness, chatter and tool performance during end milling of hardened steel D2. J Mater Process Technol 201(1):466–470CrossRef Amin AN et al (2008) Effects of workpiece preheating on surface roughness, chatter and tool performance during end milling of hardened steel D2. J Mater Process Technol 201(1):466–470CrossRef
35.
go back to reference Kttagawa T, Maekawa K (1990) Plasma hot machining for new engineering materials. Wear 139(2):251–267CrossRef Kttagawa T, Maekawa K (1990) Plasma hot machining for new engineering materials. Wear 139(2):251–267CrossRef
36.
go back to reference Popa L (2012) Complex study of plasma hot machining (PMP). Revista de Tehnologii Neconventionale 16(1):26 Popa L (2012) Complex study of plasma hot machining (PMP). Revista de Tehnologii Neconventionale 16(1):26
37.
go back to reference De Lacalle LNL et al (2004) Plasma assisted milling of heat-resistant superalloys. J Manuf Sci Eng 126(2):274–285CrossRef De Lacalle LNL et al (2004) Plasma assisted milling of heat-resistant superalloys. J Manuf Sci Eng 126(2):274–285CrossRef
38.
go back to reference Leshock CE, Kim J-N, Shin YC (2001) Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. Int J Mach Tools Manuf 41(6):877–897CrossRef Leshock CE, Kim J-N, Shin YC (2001) Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. Int J Mach Tools Manuf 41(6):877–897CrossRef
39.
go back to reference Novak J, Shin Y, Incropera F (1997) Assessment of plasma enhanced machining for improved machinability of Inconel 718. J Manuf Sci Eng 119(1):125–129CrossRef Novak J, Shin Y, Incropera F (1997) Assessment of plasma enhanced machining for improved machinability of Inconel 718. J Manuf Sci Eng 119(1):125–129CrossRef
40.
go back to reference Shin YC, Kim J-N (1996) Plasma enhanced machining of Inconel 718. Manuf Sci Eng ASME MED 4:243–249 Shin YC, Kim J-N (1996) Plasma enhanced machining of Inconel 718. Manuf Sci Eng ASME MED 4:243–249
41.
go back to reference Jau BM, Copley SM, Bass M (1981) Laser assisted machining. In: Proceedings of the ninth north american manufacturing research conference, University Park, Pennsylvania, pp 12–15 Jau BM, Copley SM, Bass M (1981) Laser assisted machining. In: Proceedings of the ninth north american manufacturing research conference, University Park, Pennsylvania, pp 12–15
42.
go back to reference Dumitrescu P et al (2006) High-power diode laser assisted hard turning of AISI D2 tool steel. Int J Mach Tools Manuf 46(15):2009–2016CrossRef Dumitrescu P et al (2006) High-power diode laser assisted hard turning of AISI D2 tool steel. Int J Mach Tools Manuf 46(15):2009–2016CrossRef
43.
go back to reference Thomas T, Vigneau JO (1999) Laser-assisted milling process. Google Patents Thomas T, Vigneau JO (1999) Laser-assisted milling process. Google Patents
44.
go back to reference Chryssolouris G, Anifantis N, Karagiannis S (1997) Laser assisted machining: an overview. J Manuf Sci Eng 119(4B):766–769CrossRef Chryssolouris G, Anifantis N, Karagiannis S (1997) Laser assisted machining: an overview. J Manuf Sci Eng 119(4B):766–769CrossRef
45.
go back to reference Rajagopal S, Plankenhorn D, Hill V (1982) Machining aerospace alloys with the aid of a 15kW laser. J Appl Metalwork 2(3):170–184CrossRef Rajagopal S, Plankenhorn D, Hill V (1982) Machining aerospace alloys with the aid of a 15kW laser. J Appl Metalwork 2(3):170–184CrossRef
46.
go back to reference Dubey AK, Yadava V (2008) Laser beam machining—a review. Int J Mach Tools Manuf 48(6):609–628CrossRef Dubey AK, Yadava V (2008) Laser beam machining—a review. Int J Mach Tools Manuf 48(6):609–628CrossRef
47.
go back to reference Venkatesan K, Ramanujam R, Kuppan P (2014) Laser assisted machining of difficult to cut materials: research opportunities and future directions-a comprehensive review. Procedia Eng 97:1626–1636CrossRef Venkatesan K, Ramanujam R, Kuppan P (2014) Laser assisted machining of difficult to cut materials: research opportunities and future directions-a comprehensive review. Procedia Eng 97:1626–1636CrossRef
48.
go back to reference Shin YC (2000) Laser assisted machining. Mach Technol 11(3):1–6 Shin YC (2000) Laser assisted machining. Mach Technol 11(3):1–6
49.
go back to reference Velayudham A (2007) Modern manufacturing processes: a review. J Des Manuf Technol 1(1):30–40 Velayudham A (2007) Modern manufacturing processes: a review. J Des Manuf Technol 1(1):30–40
50.
go back to reference Jeon Y, Park HW, Lee CM (2013) Current research trends in external energy assisted machining. Int J Precis Eng Manuf 14(2):337–342CrossRef Jeon Y, Park HW, Lee CM (2013) Current research trends in external energy assisted machining. Int J Precis Eng Manuf 14(2):337–342CrossRef
51.
go back to reference Rozzi JC et al (2000) Experimental evaluation of the laser assisted machining of silicon nitride ceramics. J Manuf Sci Eng 122(4):666–670CrossRef Rozzi JC et al (2000) Experimental evaluation of the laser assisted machining of silicon nitride ceramics. J Manuf Sci Eng 122(4):666–670CrossRef
52.
go back to reference Warap N, Mohid Z, Rahim EA (2013) Laser assisted machining of titanium alloys. In: Materials science forum. Trans Tech Publications, Switzerland Warap N, Mohid Z, Rahim EA (2013) Laser assisted machining of titanium alloys. In: Materials science forum. Trans Tech Publications, Switzerland
53.
go back to reference Rebro PA, Shin YC, Incropera FP (2004) Design of operating conditions for crackfree laser-assisted machining of mullite. Int J Mach Tools Manuf 44(7):677–694CrossRef Rebro PA, Shin YC, Incropera FP (2004) Design of operating conditions for crackfree laser-assisted machining of mullite. Int J Mach Tools Manuf 44(7):677–694CrossRef
54.
go back to reference Lei S, Shin YC, Incropera FP (2001) Experimental investigation of thermo-mechanical characteristics in laser-assisted machining of silicon nitride ceramics. J Manuf Sci Eng 123(4):639–646CrossRef Lei S, Shin YC, Incropera FP (2001) Experimental investigation of thermo-mechanical characteristics in laser-assisted machining of silicon nitride ceramics. J Manuf Sci Eng 123(4):639–646CrossRef
55.
go back to reference Wu J-F, Guu Y-B (2006) Laser assisted machining method and device. Google Patents Wu J-F, Guu Y-B (2006) Laser assisted machining method and device. Google Patents
56.
go back to reference Kim K-S et al (2011) A review on research and development of laser assisted turning. Int J Precis Eng Manuf 12(4):753–759CrossRef Kim K-S et al (2011) A review on research and development of laser assisted turning. Int J Precis Eng Manuf 12(4):753–759CrossRef
57.
go back to reference Braham-Bouchnak T et al (2013) The influence of laser assistance on the machinability of the titanium alloy Ti555-3. Int J Adv Manuf Technol 68(9–12):2471–2481CrossRef Braham-Bouchnak T et al (2013) The influence of laser assistance on the machinability of the titanium alloy Ti555-3. Int J Adv Manuf Technol 68(9–12):2471–2481CrossRef
58.
go back to reference Shi B, Attia H (2013) Integrated process of laser-assisted machining and laser surface heat treatment. J Manuf Sci Eng 135(6):061021CrossRef Shi B, Attia H (2013) Integrated process of laser-assisted machining and laser surface heat treatment. J Manuf Sci Eng 135(6):061021CrossRef
59.
go back to reference Anderson M, Patwa R, Shin YC (2006) Laser-assisted machining of Inconel 718 with an economic analysis. Int J Mach Tools Manuf 46(14):1879–1891CrossRef Anderson M, Patwa R, Shin YC (2006) Laser-assisted machining of Inconel 718 with an economic analysis. Int J Mach Tools Manuf 46(14):1879–1891CrossRef
60.
go back to reference Kannan V, Radhakrishnan R, Palaniyandi K (2014) A review on conventional and laser assisted machining of Aluminium based metal matrix composites. Eng Rev 34(2):75–84 Kannan V, Radhakrishnan R, Palaniyandi K (2014) A review on conventional and laser assisted machining of Aluminium based metal matrix composites. Eng Rev 34(2):75–84
61.
go back to reference Klocke F, Bergs T (1997) Laser-assisted turning of advanced ceramics. In: Lasers and optics in manufacturing III. International Society for Optics and Photonics Klocke F, Bergs T (1997) Laser-assisted turning of advanced ceramics. In: Lasers and optics in manufacturing III. International Society for Optics and Photonics
62.
go back to reference Rahim E, Warap N, Mohid Z (2015) Thermal-assisted machining of nickel-based alloy. Superalloys Rahim E, Warap N, Mohid Z (2015) Thermal-assisted machining of nickel-based alloy. Superalloys
63.
go back to reference Kong XJ et al (2014) Laser-assisted machining of advanced materials. In: Materials science forum. Trans Tech Publications, Switzerland Kong XJ et al (2014) Laser-assisted machining of advanced materials. In: Materials science forum. Trans Tech Publications, Switzerland
64.
go back to reference Pfefferkorn FE, Incropera FP, Shin YC (2005) Heat transfer model of semi-transparent ceramics undergoing laser-assisted machining. Int J Heat Mass Transf 48(10):1999–2012CrossRef Pfefferkorn FE, Incropera FP, Shin YC (2005) Heat transfer model of semi-transparent ceramics undergoing laser-assisted machining. Int J Heat Mass Transf 48(10):1999–2012CrossRef
65.
go back to reference Xuefeng W, Hongzhi Z, Yang W (2009) Three-dimensional thermal analysis for laser assisted machining of ceramics using FEA. In: Proceedings of SPIE Xuefeng W, Hongzhi Z, Yang W (2009) Three-dimensional thermal analysis for laser assisted machining of ceramics using FEA. In: Proceedings of SPIE
66.
go back to reference Rozzi JC et al (1998) Transient thermal response of a rotating cylindrical silicon nitride workpiece subjected to a translating laser heat source, part I: comparison of surface temperature measurements with theoretical results. J Heat Transfer 120(4):899–906CrossRef Rozzi JC et al (1998) Transient thermal response of a rotating cylindrical silicon nitride workpiece subjected to a translating laser heat source, part I: comparison of surface temperature measurements with theoretical results. J Heat Transfer 120(4):899–906CrossRef
67.
go back to reference Sun S, Harris J, Brandt M (2008) Parametric investigation of laser-assisted machining of commercially pure titanium. Adv Eng Mater 10(6):565–572CrossRef Sun S, Harris J, Brandt M (2008) Parametric investigation of laser-assisted machining of commercially pure titanium. Adv Eng Mater 10(6):565–572CrossRef
68.
go back to reference Gratias J et al (1993) Proposition of a method to optimize the machining of XC42 steel with laser assistance. CIRP Ann Manuf Technol 42(1):115–118CrossRef Gratias J et al (1993) Proposition of a method to optimize the machining of XC42 steel with laser assistance. CIRP Ann Manuf Technol 42(1):115–118CrossRef
69.
go back to reference Yang B, Lei S (2008) Laser-assisted milling of silicon nitride ceramic: a machinability study. Int J Mechatron Manuf Syst 1(1):116–130MathSciNet Yang B, Lei S (2008) Laser-assisted milling of silicon nitride ceramic: a machinability study. Int J Mechatron Manuf Syst 1(1):116–130MathSciNet
70.
go back to reference Lei S, Shin YC, Incropera FP (2000) Deformation mechanisms and constitutive modeling for silicon nitride undergoing laser-assisted machining. Int J Mach Tools Manuf 40(15):2213–2233CrossRef Lei S, Shin YC, Incropera FP (2000) Deformation mechanisms and constitutive modeling for silicon nitride undergoing laser-assisted machining. Int J Mach Tools Manuf 40(15):2213–2233CrossRef
71.
go back to reference Bejjani R et al (2011) Laser assisted turning of titanium metal matrix composite. CIRP Ann Manuf Technol 60(1):61–64CrossRef Bejjani R et al (2011) Laser assisted turning of titanium metal matrix composite. CIRP Ann Manuf Technol 60(1):61–64CrossRef
72.
go back to reference Attia H et al (2010) Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP Ann Manuf Technol 59(1):83–88CrossRef Attia H et al (2010) Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP Ann Manuf Technol 59(1):83–88CrossRef
73.
go back to reference Anderson M, Shin Y (2006) Laser-assisted machining of an austenitic stainless steel: P550. Proc Inst Mech Eng Part B J Eng Manuf 220(12):2055–2067CrossRef Anderson M, Shin Y (2006) Laser-assisted machining of an austenitic stainless steel: P550. Proc Inst Mech Eng Part B J Eng Manuf 220(12):2055–2067CrossRef
74.
go back to reference Ding H, Shin YC (2010) Laser-assisted machining of hardened steel parts with surface integrity analysis. Int J Mach Tools Manuf 50(1):106–114CrossRef Ding H, Shin YC (2010) Laser-assisted machining of hardened steel parts with surface integrity analysis. Int J Mach Tools Manuf 50(1):106–114CrossRef
75.
go back to reference Germain G, Dal Santo P, Lebrun JL (2011) Comprehension of chip formation in laser assisted machining. Int J Mach Tools Manuf 51(3):230–238CrossRef Germain G, Dal Santo P, Lebrun JL (2011) Comprehension of chip formation in laser assisted machining. Int J Mach Tools Manuf 51(3):230–238CrossRef
76.
go back to reference Garcí V et al (2013) Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM). Int J Mach Tools Manuf 74:19–28CrossRef Garcí V et al (2013) Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM). Int J Mach Tools Manuf 74:19–28CrossRef
77.
go back to reference Kim D-H, Lee C-M (2014) A study of cutting force and preheating-temperature prediction for laser-assisted milling of Inconel 718 and AISI 1045 steel. Int J Heat Mass Transf 71:264–274CrossRef Kim D-H, Lee C-M (2014) A study of cutting force and preheating-temperature prediction for laser-assisted milling of Inconel 718 and AISI 1045 steel. Int J Heat Mass Transf 71:264–274CrossRef
78.
go back to reference Venkatesan K, Ramanujam R, Kuppan P (2014) Analysis of cutting forces and temperature in laser assisted machining of inconel 718 using Taguchi method. Procedia Eng 97:1637–1646CrossRef Venkatesan K, Ramanujam R, Kuppan P (2014) Analysis of cutting forces and temperature in laser assisted machining of inconel 718 using Taguchi method. Procedia Eng 97:1637–1646CrossRef
79.
go back to reference Dong-Gyu A, Kyung-Won B (2009) Influence of cutting parameters on surface characteristics of cut section in cutting of Inconel 718 sheet using CW Nd: YAG laser. Trans Nonferr Metals Soc China 19:s32–s39CrossRef Dong-Gyu A, Kyung-Won B (2009) Influence of cutting parameters on surface characteristics of cut section in cutting of Inconel 718 sheet using CW Nd: YAG laser. Trans Nonferr Metals Soc China 19:s32–s39CrossRef
80.
go back to reference Kong X et al (2015) Cutting performance and coated tool wear mechanisms in laser-assisted milling K24 nickel-based superalloy. Int J Adv Manuf Technol 77(9–12):2151–2163CrossRef Kong X et al (2015) Cutting performance and coated tool wear mechanisms in laser-assisted milling K24 nickel-based superalloy. Int J Adv Manuf Technol 77(9–12):2151–2163CrossRef
81.
go back to reference Thawari G et al (2005) Influence of process parameters during pulsed Nd: YAG laser cutting of nickel-base superalloys. J Mater Process Technol 170(1):229–239CrossRef Thawari G et al (2005) Influence of process parameters during pulsed Nd: YAG laser cutting of nickel-base superalloys. J Mater Process Technol 170(1):229–239CrossRef
82.
go back to reference Ding H, Shin YC (2013) Improvement of machinability of Waspaloy via laser-assisted machining. Int J Adv Manuf Technol 64(1–4):475–486CrossRef Ding H, Shin YC (2013) Improvement of machinability of Waspaloy via laser-assisted machining. Int J Adv Manuf Technol 64(1–4):475–486CrossRef
83.
go back to reference Rebro PA, Shin YC, Incropera FP (2002) Laser-assisted machining of reaction sintered mullite ceramics. J Manuf Sci Eng 124(4):875–885CrossRef Rebro PA, Shin YC, Incropera FP (2002) Laser-assisted machining of reaction sintered mullite ceramics. J Manuf Sci Eng 124(4):875–885CrossRef
84.
go back to reference Lee S-J, Kim J-D, Suh J (2014) Microstructural variations and machining characteristics of silicon nitride ceramics from increasing the temperature in laser assisted machining. Int J Precis Eng Manuf 15(7):1269–1274CrossRef Lee S-J, Kim J-D, Suh J (2014) Microstructural variations and machining characteristics of silicon nitride ceramics from increasing the temperature in laser assisted machining. Int J Precis Eng Manuf 15(7):1269–1274CrossRef
85.
go back to reference Kim J-D, Lee S-J, Suh J (2011) Characteristics of laser assisted machining for silicon nitride ceramic according to machining parameters. J Mech Sci Technol 25(4):995–1001CrossRef Kim J-D, Lee S-J, Suh J (2011) Characteristics of laser assisted machining for silicon nitride ceramic according to machining parameters. J Mech Sci Technol 25(4):995–1001CrossRef
86.
go back to reference Rashid RAR et al (2013) Experimental investigation of laser assisted machining of AZ91 magnesium alloy. Int J Precis Eng Manuf 14(7):1263–1265CrossRef Rashid RAR et al (2013) Experimental investigation of laser assisted machining of AZ91 magnesium alloy. Int J Precis Eng Manuf 14(7):1263–1265CrossRef
87.
go back to reference Pfefferkorn FE et al (2004) Laser-assisted machining of magnesia-partially-stabilized zirconia. J Manuf Sci Eng 126(1):42–51CrossRef Pfefferkorn FE et al (2004) Laser-assisted machining of magnesia-partially-stabilized zirconia. J Manuf Sci Eng 126(1):42–51CrossRef
88.
go back to reference Wang Y, Yang L, Wang N (2002) An investigation of laser-assisted machining of Al2O3 particle reinforced aluminum matrix composite. J Mater Process Technol 129(1):268–272CrossRef Wang Y, Yang L, Wang N (2002) An investigation of laser-assisted machining of Al2O3 particle reinforced aluminum matrix composite. J Mater Process Technol 129(1):268–272CrossRef
89.
go back to reference Chang C-W, Kuo C-P (2007) Evaluation of surface roughness in laser-assisted machining of aluminum oxide ceramics with Taguchi method. Int J Mach Tools Manuf 47(1):141–147CrossRef Chang C-W, Kuo C-P (2007) Evaluation of surface roughness in laser-assisted machining of aluminum oxide ceramics with Taguchi method. Int J Mach Tools Manuf 47(1):141–147CrossRef
90.
go back to reference Dandekar CR, Shin YC (2010) Laser-assisted machining of a fiber reinforced metal matrix composite. J Manuf Sci Eng 132(6):061004CrossRef Dandekar CR, Shin YC (2010) Laser-assisted machining of a fiber reinforced metal matrix composite. J Manuf Sci Eng 132(6):061004CrossRef
91.
go back to reference Hedberg G, Shin Y, Xu L (2015) Laser-assisted milling of Ti-6Al-4V with the consideration of surface integrity. Int J Adv Manuf Technol 79(9–12):1645–1658CrossRef Hedberg G, Shin Y, Xu L (2015) Laser-assisted milling of Ti-6Al-4V with the consideration of surface integrity. Int J Adv Manuf Technol 79(9–12):1645–1658CrossRef
92.
go back to reference Germain G et al (2006) Effect of laser assistance machining on residual stress and fatigue strength for a bearing steel (100Cr6) and a titanium alloy (Ti 6Al 4V). In: Materials science forum. Trans Tech Publications, Switzerland Germain G et al (2006) Effect of laser assistance machining on residual stress and fatigue strength for a bearing steel (100Cr6) and a titanium alloy (Ti 6Al 4V). In: Materials science forum. Trans Tech Publications, Switzerland
93.
go back to reference Rashid RR et al (2012) An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti–6Cr–5Mo–5V–4Al beta titanium alloy. Int J Mach Tools Manuf 63:58–69CrossRef Rashid RR et al (2012) An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti–6Cr–5Mo–5V–4Al beta titanium alloy. Int J Mach Tools Manuf 63:58–69CrossRef
94.
go back to reference Sun S et al (2011) Experimental investigation of cutting forces and tool wear during laser-assisted milling of Ti-6Al-4V alloy. Proc Inst Mech Eng Part B J Eng Manuf 225(9):1512–1527CrossRef Sun S et al (2011) Experimental investigation of cutting forces and tool wear during laser-assisted milling of Ti-6Al-4V alloy. Proc Inst Mech Eng Part B J Eng Manuf 225(9):1512–1527CrossRef
95.
go back to reference Nasr MNA, Balbaa M (2014) Effect of laser power on residual stresses when laser-assisted turning of AISI 4340 steel. In: Proceedings of the canadian society for mechanical engineering international congress, Toronto, Ontario, Canada Nasr MNA, Balbaa M (2014) Effect of laser power on residual stresses when laser-assisted turning of AISI 4340 steel. In: Proceedings of the canadian society for mechanical engineering international congress, Toronto, Ontario, Canada
96.
go back to reference Germain G et al (2008) Laser-assisted machining of Inconel 718 with carbide and ceramic inserts. Int J Mater Form 1(1):523–526CrossRef Germain G et al (2008) Laser-assisted machining of Inconel 718 with carbide and ceramic inserts. Int J Mater Form 1(1):523–526CrossRef
97.
go back to reference Lee J-H et al (2008) Trends of laser integrated machine. J Korean Soc Precis Eng 25(9):20–26MathSciNet Lee J-H et al (2008) Trends of laser integrated machine. J Korean Soc Precis Eng 25(9):20–26MathSciNet
98.
go back to reference Dahotre NB, Harimkar SP (2008) Laser fabrication and machining of materials. Springer, New York Dahotre NB, Harimkar SP (2008) Laser fabrication and machining of materials. Springer, New York
99.
go back to reference Nath A (2013) High power lasers in material processing applications: an overview of recent developments. In: Laser-assisted fabrication of materials. Springer, New York, pp 69–111 Nath A (2013) High power lasers in material processing applications: an overview of recent developments. In: Laser-assisted fabrication of materials. Springer, New York, pp 69–111
100.
go back to reference König W, Zaboklicki AK (1993) Laser assisted hot machining of ceramics and composite materials, vol 847. National Institute of Science and Technology, NIST Special Publication König W, Zaboklicki AK (1993) Laser assisted hot machining of ceramics and composite materials, vol 847. National Institute of Science and Technology, NIST Special Publication
101.
go back to reference König W, Wageman A (1991) Fine machining of advanced ceramics. In: Vincenzini P (ed) Ceramics today—tomorrow’s ceramics, Montecatini Terme, Italy, pp 2769–2784 König W, Wageman A (1991) Fine machining of advanced ceramics. In: Vincenzini P (ed) Ceramics today—tomorrow’s ceramics, Montecatini Terme, Italy, pp 2769–2784
102.
go back to reference Kennedy E, Byrne G, Collins D (2004) A review of the use of high power diode lasers in surface hardening. J Mater Process Technol 155:1855–1860CrossRef Kennedy E, Byrne G, Collins D (2004) A review of the use of high power diode lasers in surface hardening. J Mater Process Technol 155:1855–1860CrossRef
103.
go back to reference Bachmann F (2003) Industrial applications of high power diode lasers in materials processing. Appl Surf Sci 208:125–136CrossRef Bachmann F (2003) Industrial applications of high power diode lasers in materials processing. Appl Surf Sci 208:125–136CrossRef
104.
go back to reference Li L (2000) The advances and characteristics of high-power diode laser materials processing. Opt Lasers Eng 34(4):231–253CrossRef Li L (2000) The advances and characteristics of high-power diode laser materials processing. Opt Lasers Eng 34(4):231–253CrossRef
105.
go back to reference Choi S et al (2007) Characteristics of metal surface heat treatment by diode laser. J Korean Soc Manuf Process Eng 6(3):16–23 Choi S et al (2007) Characteristics of metal surface heat treatment by diode laser. J Korean Soc Manuf Process Eng 6(3):16–23
106.
go back to reference Rashid RR et al (2012) The effect of laser power on the machinability of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy during laser assisted machining. Int J Mach Tools Manuf 63:41–43CrossRef Rashid RR et al (2012) The effect of laser power on the machinability of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy during laser assisted machining. Int J Mach Tools Manuf 63:41–43CrossRef
107.
go back to reference Venkatesan K, Ramanujam R, Kuppan P (2016) Parametric modeling and optimization of laser scanning parameters during laser assisted machining of Inconel 718. Opt Laser Technol 78:10–18CrossRef Venkatesan K, Ramanujam R, Kuppan P (2016) Parametric modeling and optimization of laser scanning parameters during laser assisted machining of Inconel 718. Opt Laser Technol 78:10–18CrossRef
108.
go back to reference Kannan MV et al (2014) Effect of laser scan speed on surface temperature, cutting forces and tool wear during laser assisted machining of alumina. Procedia Eng 97:1647–1656CrossRef Kannan MV et al (2014) Effect of laser scan speed on surface temperature, cutting forces and tool wear during laser assisted machining of alumina. Procedia Eng 97:1647–1656CrossRef
109.
go back to reference Sun S, Brandt M, Dargusch M (2010) The effect of a laser beam on chip formation during machining of Ti6Al4V alloy. Metall Mater Trans A 41(6):1573–1581CrossRef Sun S, Brandt M, Dargusch M (2010) The effect of a laser beam on chip formation during machining of Ti6Al4V alloy. Metall Mater Trans A 41(6):1573–1581CrossRef
110.
go back to reference Yang J et al (2010) Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy. J Mater Process Technol 210(15):2215–2222 Yang J et al (2010) Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy. J Mater Process Technol 210(15):2215–2222
111.
go back to reference Zamani H et al (2012) Numerical and experimental investigation of laser assisted side milling of Ti6Al4V alloy. In: Proceedings of materials science & technology conference and exhibition Zamani H et al (2012) Numerical and experimental investigation of laser assisted side milling of Ti6Al4V alloy. In: Proceedings of materials science & technology conference and exhibition
112.
go back to reference Zamani H et al (2013) 3D simulation and process optimization of laser assisted milling of Ti6Al4V. Procedia CIRP 8:75–80 Zamani H et al (2013) 3D simulation and process optimization of laser assisted milling of Ti6Al4V. Procedia CIRP 8:75–80
113.
go back to reference Joshi A et al (2014) A study of temperature distribution for laser assisted machining of Ti-6Al-4V alloy. Procedia Eng 97:1466–1473 Joshi A et al (2014) A study of temperature distribution for laser assisted machining of Ti-6Al-4V alloy. Procedia Eng 97:1466–1473
114.
go back to reference Rashid RR et al (2014) A study on laser assisted machining of Ti10V2Fe3Al alloy with varying laser power. Int J Adv Manuf Technol 74(1–4):219–224 Rashid RR et al (2014) A study on laser assisted machining of Ti10V2Fe3Al alloy with varying laser power. Int J Adv Manuf Technol 74(1–4):219–224
115.
go back to reference Xi Y et al (2014) Numerical modeling of laser assisted machining of a beta titanium alloy. Comput Mater Sci 92:149–156 Xi Y et al (2014) Numerical modeling of laser assisted machining of a beta titanium alloy. Comput Mater Sci 92:149–156
116.
go back to reference Ayed Y et al (2014) Experimental and numerical study of laser-assisted machining of Ti6Al4V titanium alloy. Finite Elem Anal Des 92:72–79 Ayed Y et al (2014) Experimental and numerical study of laser-assisted machining of Ti6Al4V titanium alloy. Finite Elem Anal Des 92:72–79
117.
go back to reference Pérez J, Llorente J, Sanchez J (2000) Advanced cutting conditions for the milling of aeronautical alloys. J Mater Process Technol 100(1):1–11 Pérez J, Llorente J, Sanchez J (2000) Advanced cutting conditions for the milling of aeronautical alloys. J Mater Process Technol 100(1):1–11
118.
go back to reference Pfender E, Spores R, Chen WLT (1995) A new look at the thermal and gas dynamic characteristics of a plasma jet. Int J Mater Prod Technol 10(3–6):548–565 Pfender E, Spores R, Chen WLT (1995) A new look at the thermal and gas dynamic characteristics of a plasma jet. Int J Mater Prod Technol 10(3–6):548–565
119.
go back to reference Pfender E, Fincke J, Spores R (1991) Entrainment of cold gas into thermal plasma jets. Plasma Chem Plasma Process 11(4):529–543CrossRef Pfender E, Fincke J, Spores R (1991) Entrainment of cold gas into thermal plasma jets. Plasma Chem Plasma Process 11(4):529–543CrossRef
120.
go back to reference Wang Z et al (2003) Hybrid machining of Inconel 718. Int J Mach Tools Manuf 43(13):1391–1396CrossRef Wang Z et al (2003) Hybrid machining of Inconel 718. Int J Mach Tools Manuf 43(13):1391–1396CrossRef
121.
go back to reference Kitagawa T, Maekawa K, Kubo A (1988) Plasma hot machining for high hardness metals. Bull Jpn Soc Precis Eng 22(2):145–151 Kitagawa T, Maekawa K, Kubo A (1988) Plasma hot machining for high hardness metals. Bull Jpn Soc Precis Eng 22(2):145–151
122.
go back to reference Armendia M et al (2010) Comparison of the machinabilities of Ti6Al4V and TIMETAL® 54M using uncoated WC–Co tools. J Mater Process Technol 210(2):197–203CrossRef Armendia M et al (2010) Comparison of the machinabilities of Ti6Al4V and TIMETAL® 54M using uncoated WC–Co tools. J Mater Process Technol 210(2):197–203CrossRef
123.
go back to reference Hossain MI et al (2008) Enhancement of machinability by workpiece preheating in end milling of Ti-6Al-4V. J Achiev Mater Manuf Eng 31(2):320–326 Hossain MI et al (2008) Enhancement of machinability by workpiece preheating in end milling of Ti-6Al-4V. J Achiev Mater Manuf Eng 31(2):320–326
124.
go back to reference Baili M et al (2011) An experimental investigation of hot machining with induction to improve Ti-5553 machinability. In: Applied mechanics and Materials. Trans Tech Publications, Switzerland Baili M et al (2011) An experimental investigation of hot machining with induction to improve Ti-5553 machinability. In: Applied mechanics and Materials. Trans Tech Publications, Switzerland
125.
go back to reference Amin AN et al (2007) Influence of preheating on performance of circular carbide inserts in end milling of carbon steel. J Mater Process Technol 185(1):97–105CrossRef Amin AN et al (2007) Influence of preheating on performance of circular carbide inserts in end milling of carbon steel. J Mater Process Technol 185(1):97–105CrossRef
126.
go back to reference Amin A, Hossain MI, Patwari AU (2011) Enhancement of Machinability of Inconel 718 in End Milling through Online Induction Heating of Workpiece. In: Advanced materials research. Trans Tech Publications, Switzerland Amin A, Hossain MI, Patwari AU (2011) Enhancement of Machinability of Inconel 718 in End Milling through Online Induction Heating of Workpiece. In: Advanced materials research. Trans Tech Publications, Switzerland
127.
go back to reference Ginta TL, Amin AN (2013) Surface integrity in end milling titanium alloy Ti-6Al-4V under heat assisted machining. Asian J Sci Res 6(3):609CrossRef Ginta TL, Amin AN (2013) Surface integrity in end milling titanium alloy Ti-6Al-4V under heat assisted machining. Asian J Sci Res 6(3):609CrossRef
Metadata
Title
Thermal-Assisted Machining of Titanium Alloys
Authors
O. A. Shams
A. Pramanik
T. T. Chandratilleke
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-56099-1_3

Premium Partners