Skip to main content
Top

2014 | OriginalPaper | Chapter

3. Thermal Conductivity of Particulate Nanocomposites

Authors : Jose Ordonez-Miranda, Ronggui Yang, Juan Jose Alvarado-Gil

Published in: Nanoscale Thermoelectrics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The modeling of the thermal conductivity of composites made up of metallic and non-metallic micro/nanoparticles embedded in a solid matrix is discussed in detail, at both the dilute and non-dilute limits of particle concentrations. By modifying both the thermal conductivity of the matrix and particles, to take into account the strong scattering of the energy carriers with the surface of the nanoparticles, it is shown that the particle size effect shows up on the thermal conductivity of nanocomposites through: (1) the collision cross-section per unit volume of the particles and, (2) the mean distance that the energy carriers can travel inside the particles. The effect of the electron–phonon interactions within metallic particles shows up through the reduction of the thermal conductivity of these particles with respect to its values obtained under the Fourier law approach. The thermal conductivity of composites with metallic particles depend strongly on (1) the relative size of the particles with respect to the intrinsic coupling length, and (2) the ratio between the electron and phonon thermal conductivities. The obtained results have shown that the size dependence of the composite thermal conductivity appears not only through the interfacial thermal resistance but also by means of the electron–phonon coupling. Furthermore, at the non-dilute limit, the interaction among the particles is taken into account through a crowding factor, which is determined by the effective volume of the particles. The proposed crowding factor model is able to capture accurately the effect of the interactions among the particles for concentrations up to the maximum packing fraction of the particles. The predictions of the obtained analytical models are in good agreement with available experimental and numerical data and they can be applied to guide the design and improve the thermal performance of composite materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Torquato, S.: Random Heterogeneous Materials. Springer, New York (2001) Torquato, S.: Random Heterogeneous Materials. Springer, New York (2001)
3.
go back to reference Maxwell, J.C.: Electricity and Magnetism. Clarendon, Oxford (1873) Maxwell, J.C.: Electricity and Magnetism. Clarendon, Oxford (1873)
4.
go back to reference Benveniste, Y.: Effective thermal-conductivity of composites with a thermal contact resistance between the constituents—nondilute case. J. Appl. Phys. 61, 2840–2843 (1987)CrossRef Benveniste, Y.: Effective thermal-conductivity of composites with a thermal contact resistance between the constituents—nondilute case. J. Appl. Phys. 61, 2840–2843 (1987)CrossRef
5.
go back to reference Hasselman, D.P.H., Johnson, L.F.: Effective thermal-conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21, 508–515 (1987)CrossRef Hasselman, D.P.H., Johnson, L.F.: Effective thermal-conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 21, 508–515 (1987)CrossRef
6.
go back to reference Nan, C.W., Jin, F.S.: Multiple-scattering approach to effective properties of piezoelectric composites. Phys. Rev. B 48, 8578–8582 (1993)CrossRef Nan, C.W., Jin, F.S.: Multiple-scattering approach to effective properties of piezoelectric composites. Phys. Rev. B 48, 8578–8582 (1993)CrossRef
7.
go back to reference Nan, C.W.: Effective-medium theory of piezoelectric composites. J. Appl. Phys. 76, 1155–1163 (1994)CrossRef Nan, C.W.: Effective-medium theory of piezoelectric composites. J. Appl. Phys. 76, 1155–1163 (1994)CrossRef
8.
go back to reference Nan, C.W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997)CrossRef Nan, C.W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997)CrossRef
9.
go back to reference Khitun, A., Balandin, A., Liu, J.L., Wang, K.L.: In-plane lattice thermal conductivity of a quantum-dot superlattice. J. Appl. Phys. 88, 696–699 (2000)CrossRef Khitun, A., Balandin, A., Liu, J.L., Wang, K.L.: In-plane lattice thermal conductivity of a quantum-dot superlattice. J. Appl. Phys. 88, 696–699 (2000)CrossRef
10.
go back to reference Duan, H.L., Karihaloo, B.L., Wang, J., Yi, X.: Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Phys. Rev. B. 73, 174203–174215 (2006)CrossRef Duan, H.L., Karihaloo, B.L., Wang, J., Yi, X.: Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Phys. Rev. B. 73, 174203–174215 (2006)CrossRef
11.
go back to reference Prasher, R.: Thermal conductivity of composites of aligned nanoscale and microscale wires and pores. J. Appl. Phys. 100, 034307–034315 (2006)CrossRef Prasher, R.: Thermal conductivity of composites of aligned nanoscale and microscale wires and pores. J. Appl. Phys. 100, 034307–034315 (2006)CrossRef
12.
go back to reference Duan, H.L., Karihaloo, B.L.: Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Phys. Rev. B. 75, 064206–064214 (2007)CrossRef Duan, H.L., Karihaloo, B.L.: Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Phys. Rev. B. 75, 064206–064214 (2007)CrossRef
13.
go back to reference Minnich, A., Chen, G.: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91, 073105–073107 (2007)CrossRef Minnich, A., Chen, G.: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91, 073105–073107 (2007)CrossRef
14.
go back to reference Tian, W.X., Yang, R.G.: Thermal conductivity modeling of compacted nanowire composites. J. Appl. Phys. 101, 054320–054324 (2007)CrossRef Tian, W.X., Yang, R.G.: Thermal conductivity modeling of compacted nanowire composites. J. Appl. Phys. 101, 054320–054324 (2007)CrossRef
15.
go back to reference Jeng, M.S., Yang, R.G., Song, D., Chen, G.: Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation. J. Heat Trans. Trans. ASME 130, 042410–042420 (2008)CrossRef Jeng, M.S., Yang, R.G., Song, D., Chen, G.: Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation. J. Heat Trans. Trans. ASME 130, 042410–042420 (2008)CrossRef
16.
go back to reference Yang, R.G., Chen, G.: Thermal conductivity modeling of periodic two-dimensional nanocomposites. Physical. Rev. B 69, 10 (2004) Yang, R.G., Chen, G.: Thermal conductivity modeling of periodic two-dimensional nanocomposites. Physical. Rev. B 69, 10 (2004)
17.
go back to reference Chen, G.: Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Physical. Rev. B 57, 14958–14973 (1998)CrossRef Chen, G.: Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Physical. Rev. B 57, 14958–14973 (1998)CrossRef
18.
go back to reference Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, Hoboken, NJ (2005) Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, Hoboken, NJ (2005)
19.
go back to reference Tian, W.X., Yang, R.G.: Phonon transport and thermal conductivity percolation in random nanoparticle composites. Comput. Model. Eng. Sci. 24, 123–141 (2008) Tian, W.X., Yang, R.G.: Phonon transport and thermal conductivity percolation in random nanoparticle composites. Comput. Model. Eng. Sci. 24, 123–141 (2008)
20.
go back to reference Tian, W.X., Yang, R.G.: Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites. Appl. Phys. Lett. 90, 263105–263108 (2007)CrossRef Tian, W.X., Yang, R.G.: Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites. Appl. Phys. Lett. 90, 263105–263108 (2007)CrossRef
21.
go back to reference Yang, R.G., Chen, G., Dresselhaus, S.M.: Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Phys. Rev. B 72, 125418–125424 (2005)CrossRef Yang, R.G., Chen, G., Dresselhaus, S.M.: Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Phys. Rev. B 72, 125418–125424 (2005)CrossRef
22.
go back to reference Prasher, R.: Thermal boundary resistance of nanocomposites. Int. J. Heat Mass. Tran. 48, 4942–4952 (2005)CrossRefMATH Prasher, R.: Thermal boundary resistance of nanocomposites. Int. J. Heat Mass. Tran. 48, 4942–4952 (2005)CrossRefMATH
23.
go back to reference Ordonez-Miranda, J., Yang, R.G., Alvarado-Gil, J.J.: On the thermal conductivity of particulate nanocomposites. Appl. Phys. Lett. 98, 233111–233113 (2011)CrossRef Ordonez-Miranda, J., Yang, R.G., Alvarado-Gil, J.J.: On the thermal conductivity of particulate nanocomposites. Appl. Phys. Lett. 98, 233111–233113 (2011)CrossRef
24.
go back to reference Chen, G.: Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, Oxford. New York (2005) Chen, G.: Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, Oxford. New York (2005)
25.
go back to reference Flammer, C.: Spheroidal Wave Functions. Dover Publications, Mineola, N.Y. (2005) Flammer, C.: Spheroidal Wave Functions. Dover Publications, Mineola, N.Y. (2005)
26.
go back to reference Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 6th edn. Elsevier, Boston (2005)MATH Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 6th edn. Elsevier, Boston (2005)MATH
27.
go back to reference Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)CrossRef Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)CrossRef
28.
go back to reference Majumdar, A., Reddy, P.: Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces. Appl. Phys. Lett. 84, 4768–4770 (2004)CrossRef Majumdar, A., Reddy, P.: Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces. Appl. Phys. Lett. 84, 4768–4770 (2004)CrossRef
29.
go back to reference Kaganov, M.I., Lifshitz, I.M., Tanatarov, M.V.: Relaxation between electrons and crystalline lattices. Sov. Phys. JETP 4, 173–178 (1957)MATH Kaganov, M.I., Lifshitz, I.M., Tanatarov, M.V.: Relaxation between electrons and crystalline lattices. Sov. Phys. JETP 4, 173–178 (1957)MATH
30.
go back to reference Anisimov, S.I., Kapeliovich, B.L., Perelman, T.L.: Electron emission from metals surfaces exposed to ultra-short laser pulses. Sov. Phys. JETP 39, 375–377 (1974) Anisimov, S.I., Kapeliovich, B.L., Perelman, T.L.: Electron emission from metals surfaces exposed to ultra-short laser pulses. Sov. Phys. JETP 39, 375–377 (1974)
31.
go back to reference Qiu, T.Q., Tien, C.L.: Heat-transfer mechanisms during short-pulse laser-heating of metals. J. Heat Tran. Trans. ASME 115, 835–841 (1993)CrossRef Qiu, T.Q., Tien, C.L.: Heat-transfer mechanisms during short-pulse laser-heating of metals. J. Heat Tran. Trans. ASME 115, 835–841 (1993)CrossRef
32.
go back to reference Lin, Z., Zhigilei, L.V., Celli, V.: Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133–075149 (2008)CrossRef Lin, Z., Zhigilei, L.V., Celli, V.: Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133–075149 (2008)CrossRef
33.
go back to reference Luh, D.A., Miller, T., Paggel, J.J., Chiang, T.C.: Large electron-phonon coupling at an interface. Phys. Rev. Lett. 88, 256802–256805 (2002)CrossRef Luh, D.A., Miller, T., Paggel, J.J., Chiang, T.C.: Large electron-phonon coupling at an interface. Phys. Rev. Lett. 88, 256802–256805 (2002)CrossRef
34.
go back to reference Melnikov, D.V., Fowler, W.B.: Electron-phonon interaction in a spherical quantum dot with finite potential barriers: The Frohlich Hamiltonian. Phys. Rev. B 64, 245320–245328 (2001)CrossRef Melnikov, D.V., Fowler, W.B.: Electron-phonon interaction in a spherical quantum dot with finite potential barriers: The Frohlich Hamiltonian. Phys. Rev. B 64, 245320–245328 (2001)CrossRef
35.
go back to reference Byerly, W.E.: An Elementary Treatise on Fourier’s Series and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. Dover Publications, Mineola, NY (2003) Byerly, W.E.: An Elementary Treatise on Fourier’s Series and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. Dover Publications, Mineola, NY (2003)
36.
go back to reference Hopkins, P.E., Kassebaum, J.L., Norris, P.M.: Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films. J. Appl. Phys. 105, 023710–023717 (2009)CrossRef Hopkins, P.E., Kassebaum, J.L., Norris, P.M.: Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films. J. Appl. Phys. 105, 023710–023717 (2009)CrossRef
37.
go back to reference Mahan, G.D.: Kapitza thermal resistance between a metal and a nonmetal. Phys. Rev. B 79, 075408–075413 (2009)CrossRef Mahan, G.D.: Kapitza thermal resistance between a metal and a nonmetal. Phys. Rev. B 79, 075408–075413 (2009)CrossRef
38.
go back to reference Sergeev, A.V.: Electronic Kapitza conductance due to inelastic electron-boundary scattering. Phys. Rev. B 58, 10199–10202 (1998)CrossRef Sergeev, A.V.: Electronic Kapitza conductance due to inelastic electron-boundary scattering. Phys. Rev. B 58, 10199–10202 (1998)CrossRef
39.
go back to reference Landau, L.D., Lifshits, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, 2nd edn. Pergamon, Oxford, New York (1984) Landau, L.D., Lifshits, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, 2nd edn. Pergamon, Oxford, New York (1984)
40.
go back to reference Ordonez-Miranda, J., Yang, R.G., Alvarado-Gil, J.J.: A model for the effective thermal conductivity of metal-nonmetal particulate composites. J. Appl. Phys. 111, 044319–044330 (2012)CrossRef Ordonez-Miranda, J., Yang, R.G., Alvarado-Gil, J.J.: A model for the effective thermal conductivity of metal-nonmetal particulate composites. J. Appl. Phys. 111, 044319–044330 (2012)CrossRef
41.
go back to reference Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics, 3rd edn. Addison-Wesley, San Francisco (2002) Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics, 3rd edn. Addison-Wesley, San Francisco (2002)
42.
go back to reference Swartz, E.T., Pohl, R.O.: Thermal-resistance at interfaces. Appl. Phys. Lett. 51, 2200–2202 (1987)CrossRef Swartz, E.T., Pohl, R.O.: Thermal-resistance at interfaces. Appl. Phys. Lett. 51, 2200–2202 (1987)CrossRef
43.
go back to reference Swartz, E.T., Pohl, R.O.: Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989)CrossRef Swartz, E.T., Pohl, R.O.: Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989)CrossRef
44.
go back to reference Davis, L.C., Artz, B.E.: Thermal-conductivity of metal-matrix composites. J. Appl. Phys. 77, 4954–4960 (1995)CrossRef Davis, L.C., Artz, B.E.: Thermal-conductivity of metal-matrix composites. J. Appl. Phys. 77, 4954–4960 (1995)CrossRef
45.
go back to reference Kanskar, M., Wybourne, M.N.: Measurement of the acoustic-phonon mean free-path in a freestanding metal-film. Phys. Rev. B 50, 168–172 (1994)CrossRef Kanskar, M., Wybourne, M.N.: Measurement of the acoustic-phonon mean free-path in a freestanding metal-film. Phys. Rev. B 50, 168–172 (1994)CrossRef
46.
go back to reference Stojanovic, N., Maithripala, D.H.S., Berg, J.M., Holtz, M.: Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz law. Phys. Rev. B 82, 075418–075426 (2010)CrossRef Stojanovic, N., Maithripala, D.H.S., Berg, J.M., Holtz, M.: Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz law. Phys. Rev. B 82, 075418–075426 (2010)CrossRef
47.
go back to reference Chantrenne, P., Raynaud, M., Baillis, D., Barrat, J.L.: Study of phonon heat transfer in metallic solids from molecular dynamic simulations. Microscale Thermophys. Eng. 7, 117–136 (2003)CrossRef Chantrenne, P., Raynaud, M., Baillis, D., Barrat, J.L.: Study of phonon heat transfer in metallic solids from molecular dynamic simulations. Microscale Thermophys. Eng. 7, 117–136 (2003)CrossRef
48.
go back to reference Chen, G., Zeng, T.F.: Nonequilibrium phonon and electron transport in heterostructures and superlattices. Microscale Thermophys. Eng. 5, 71–88 (2001)CrossRef Chen, G., Zeng, T.F.: Nonequilibrium phonon and electron transport in heterostructures and superlattices. Microscale Thermophys. Eng. 5, 71–88 (2001)CrossRef
49.
go back to reference Zeng, T.F., Chen, G.: Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation. J. Heat Tran. Trans. ASME 123, 340–347 (2001)CrossRef Zeng, T.F., Chen, G.: Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation. J. Heat Tran. Trans. ASME 123, 340–347 (2001)CrossRef
50.
go back to reference Hasselman, D.P.H., Donaldson, K.Y., Liu, J., Gauckler, L.J., Ownby, P.D.: Thermal-conductivity of a particulate-diamond-reinforced cordierite matrix composite. J. Am. Ceram. Soc. 77, 1757–1760 (1994)CrossRef Hasselman, D.P.H., Donaldson, K.Y., Liu, J., Gauckler, L.J., Ownby, P.D.: Thermal-conductivity of a particulate-diamond-reinforced cordierite matrix composite. J. Am. Ceram. Soc. 77, 1757–1760 (1994)CrossRef
51.
go back to reference Nielsen, L.E.: The thermal and electrical conductivity of two-phase systems. Ind. Eng. Chem. Fund. 13, 17–20 (1974)CrossRef Nielsen, L.E.: The thermal and electrical conductivity of two-phase systems. Ind. Eng. Chem. Fund. 13, 17–20 (1974)CrossRef
52.
go back to reference Lewis, T.B., Nielsen, L.E.: Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 14, 1449–1471 (1970)CrossRef Lewis, T.B., Nielsen, L.E.: Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 14, 1449–1471 (1970)CrossRef
53.
go back to reference Nielsen, L.E.: Generalized equation for elastic moduli of composite materials. J. Appl. Phys. 41, 4626–4627 (1970)CrossRef Nielsen, L.E.: Generalized equation for elastic moduli of composite materials. J. Appl. Phys. 41, 4626–4627 (1970)CrossRef
54.
go back to reference Bruggeman, D.A.G.: Calculation of various physics constants in heterogenous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances. Annalen Der Physik 24, 636–664 (1935)CrossRef Bruggeman, D.A.G.: Calculation of various physics constants in heterogenous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances. Annalen Der Physik 24, 636–664 (1935)CrossRef
55.
go back to reference Norris, A.N., Sheng, P., Callegari, A.J.: Effective-medium theories for two-phase dielectric media. J. Appl. Phys. 57, 1990–1996 (1985)CrossRef Norris, A.N., Sheng, P., Callegari, A.J.: Effective-medium theories for two-phase dielectric media. J. Appl. Phys. 57, 1990–1996 (1985)CrossRef
56.
go back to reference Every, A.G., Tzou, Y., Hasselman, D.P.H., Raj, R.: The effect of particle-size on the thermal-conductivity of Zns diamond composites. Acta Metall. Mater. 40, 123–129 (1992)CrossRef Every, A.G., Tzou, Y., Hasselman, D.P.H., Raj, R.: The effect of particle-size on the thermal-conductivity of Zns diamond composites. Acta Metall. Mater. 40, 123–129 (1992)CrossRef
57.
go back to reference Ordonez-Miranda, J., Alvarado-Gil, J.J.: Thermal conductivity of nanocomposites with high volume fractions of particles. Compos. Sci. Technol. 72, 853–857 (2012)CrossRef Ordonez-Miranda, J., Alvarado-Gil, J.J.: Thermal conductivity of nanocomposites with high volume fractions of particles. Compos. Sci. Technol. 72, 853–857 (2012)CrossRef
58.
go back to reference Ordonez-Miranda, J., Alvarado-Gil, J.J., Medina-Ezquivel, R.: Generalized bruggeman formula for the effective thermal conductivity of particulate composites with an interface layer. Int. J. Thermophys. 31, 975–986 (2010)CrossRef Ordonez-Miranda, J., Alvarado-Gil, J.J., Medina-Ezquivel, R.: Generalized bruggeman formula for the effective thermal conductivity of particulate composites with an interface layer. Int. J. Thermophys. 31, 975–986 (2010)CrossRef
59.
go back to reference Bussian, A.E.: Electrical conductance in a porous-medium. Geophysics 48, 1258–1268 (1983)CrossRef Bussian, A.E.: Electrical conductance in a porous-medium. Geophysics 48, 1258–1268 (1983)CrossRef
60.
go back to reference Ordonez-Miranda, J., Yang, R.G., Alvarado-Gil, J.J.: A crowding factor model for the thermal conductivity of particulate composites at non-dilute limit. J. Appl. Phys. 114, 064306–064312 (2013) Ordonez-Miranda, J., Yang, R.G., Alvarado-Gil, J.J.: A crowding factor model for the thermal conductivity of particulate composites at non-dilute limit. J. Appl. Phys. 114, 064306–064312 (2013)
61.
go back to reference Chang, W.-y., Tsai, H.-f., Lai, C.-C.: Imperfect competition and crowding out. Econ. Lett. 41, 73–79 (1993)CrossRef Chang, W.-y., Tsai, H.-f., Lai, C.-C.: Imperfect competition and crowding out. Econ. Lett. 41, 73–79 (1993)CrossRef
62.
go back to reference Vand, V.: Viscosity of solutions and suspensions. J. Phys. Colloid Chem. 52, 277–299 (1948)CrossRef Vand, V.: Viscosity of solutions and suspensions. J. Phys. Colloid Chem. 52, 277–299 (1948)CrossRef
63.
go back to reference Mooney, M.: The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 6, 162–170 (1951)CrossRef Mooney, M.: The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 6, 162–170 (1951)CrossRef
64.
go back to reference Aczél, J., Dhombres, J.G.: Functional Equations in Several Variables. Cambridge University Press, Cambridge (1989)CrossRefMATH Aczél, J., Dhombres, J.G.: Functional Equations in Several Variables. Cambridge University Press, Cambridge (1989)CrossRefMATH
65.
go back to reference Hassani, S.: Mathematical Physics: A Modern Introduction to Its Foundations. Springer, New York (1999)CrossRefMATH Hassani, S.: Mathematical Physics: A Modern Introduction to Its Foundations. Springer, New York (1999)CrossRefMATH
66.
go back to reference Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edn. Chapman & Hall, Boca Raton (2003) Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edn. Chapman & Hall, Boca Raton (2003)
67.
go back to reference Wong, C.P., Bollampally, R.S.: Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 74, 3396–3403 (1999)CrossRef Wong, C.P., Bollampally, R.S.: Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 74, 3396–3403 (1999)CrossRef
68.
go back to reference Wang, J.J., Yi, X.S.: Preparation and the properties of PMR-type polyimide composites with aluminum nitride. J. Appl. Polym. Sci. 89, 3913–3917 (2003)CrossRef Wang, J.J., Yi, X.S.: Preparation and the properties of PMR-type polyimide composites with aluminum nitride. J. Appl. Polym. Sci. 89, 3913–3917 (2003)CrossRef
Metadata
Title
Thermal Conductivity of Particulate Nanocomposites
Authors
Jose Ordonez-Miranda
Ronggui Yang
Juan Jose Alvarado-Gil
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-02012-9_3