Skip to main content
Top

2014 | OriginalPaper | Chapter

2. Electron Transport Engineering by Nanostructures for Efficient Thermoelectrics

Authors : Je-Hyeong Bahk, Ali Shakouri

Published in: Nanoscale Thermoelectrics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We theoretically investigate nanoscale structures such as nanoparticles embedded in bulk materials as a means of improving the thermoelectric energy conversion efficiency. We focus on the impact of such nanostructures on the electron transport in the host material, and discuss the enhancement of the thermoelectric power factor and thus the figure of merit. Nanostructures embedded in thermoelectric materials can create potential variations at the nanoscale due to the hetero-interfaces, which can alter the transport of charge carriers in the host material to enhance the Seebeck coefficient and the power factor. The energy-dependent electron scattering times induced by nanoparticles are calculated using the partial wave method. Thermoelectric transport properties are then calculated based on the linearized Boltzmann transport theory with the relaxation time approximation for various thermoelectric materials such as ErAs:InGaAs, PbTe, and Mg2Si. The effects of different kinds of nanoparticles including single-phase ionized metallic nanoparticles and core–shell nanoparticles embedded in semiconductors are investigated in these semiconductors. Finally the electron energy filtering scheme is discussed to further enhance the thermoelectric energy conversion efficiency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bell, LE: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)CrossRef Bell, LE: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)CrossRef
2.
go back to reference Chen, G, Shakouri, A: Heat transfer in nanostructures for solid-state energy conversion. J. Heat Transf. 124(2), 242–252 (2002)CrossRef Chen, G, Shakouri, A: Heat transfer in nanostructures for solid-state energy conversion. J. Heat Transf. 124(2), 242–252 (2002)CrossRef
4.
go back to reference Snyder, GJ, Toberer, ES: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)CrossRef Snyder, GJ, Toberer, ES: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)CrossRef
5.
go back to reference Vineis, CJ, Shakouri, A, Majumdar, A, Kanatzidis, MG: Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010)CrossRef Vineis, CJ, Shakouri, A, Majumdar, A, Kanatzidis, MG: Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010)CrossRef
6.
go back to reference Shakouri, A: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011)CrossRef Shakouri, A: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011)CrossRef
7.
go back to reference Pei, Y, Shi, X, LaLonde, A, Wang, H, Chen, L, Snyder, GJ: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (May 2011)CrossRef Pei, Y, Shi, X, LaLonde, A, Wang, H, Chen, L, Snyder, GJ: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (May 2011)CrossRef
8.
go back to reference Liu, W, Tan, X, Yin, K, Liu, H, Tang, X, Shi, J, Zhang, Q, Uher, C: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (April 2012)CrossRef Liu, W, Tan, X, Yin, K, Liu, H, Tang, X, Shi, J, Zhang, Q, Uher, C: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (April 2012)CrossRef
9.
go back to reference Heremans, JP, Jovovic, V, Toberer, ES, Saramat, A, Kurosaki, K, Charoenphakdee, K, Yamanaka, S, Snyder, JF: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)CrossRef Heremans, JP, Jovovic, V, Toberer, ES, Saramat, A, Kurosaki, K, Charoenphakdee, K, Yamanaka, S, Snyder, JF: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)CrossRef
10.
go back to reference Zebarjadi, M, Joshi, G, Zhu, G, Yu, B, Minnich, A, Lan, Y, Wang, X, Dresselhaus, M, Ren, Z, Chen, G: Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 11, 2225–2230 (2011)CrossRef Zebarjadi, M, Joshi, G, Zhu, G, Yu, B, Minnich, A, Lan, Y, Wang, X, Dresselhaus, M, Ren, Z, Chen, G: Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 11, 2225–2230 (2011)CrossRef
11.
go back to reference Bahk, J-H, Bian, Z, Zebarjadi, M, Santhanam, P, Ram, R, Shakouri, A: Thermoelectric power factor enhancement by ionized nanoparticle scattering. Appl. Phys. Lett. 99, 072118 (2011)CrossRef Bahk, J-H, Bian, Z, Zebarjadi, M, Santhanam, P, Ram, R, Shakouri, A: Thermoelectric power factor enhancement by ionized nanoparticle scattering. Appl. Phys. Lett. 99, 072118 (2011)CrossRef
12.
go back to reference Bahk, J-H, Santhanam, P, Bian, Z, Ram, R, Shakouri, A: Resonant carrier scattering by core-shell nanoparticles for thermoelectric power factor enhancement. Appl. Phys. Lett. 100, 012102 (2012)CrossRef Bahk, J-H, Santhanam, P, Bian, Z, Ram, R, Shakouri, A: Resonant carrier scattering by core-shell nanoparticles for thermoelectric power factor enhancement. Appl. Phys. Lett. 100, 012102 (2012)CrossRef
13.
go back to reference Zide, JMO, Bahk, J-H, Singh, R, Zebarjadi, M, Zeng, G, Lu, H, Feser, JP, Xu, D, Singer, SL, Bian, ZX, Majumdar, A, Bowers, JE, Shakouri, A, Gossard, AC: High efficiency semimetal/semiconductor nanocomposite thermoelectric materials. J. Appl. Phys. 108, 123702 (2010)CrossRef Zide, JMO, Bahk, J-H, Singh, R, Zebarjadi, M, Zeng, G, Lu, H, Feser, JP, Xu, D, Singer, SL, Bian, ZX, Majumdar, A, Bowers, JE, Shakouri, A, Gossard, AC: High efficiency semimetal/semiconductor nanocomposite thermoelectric materials. J. Appl. Phys. 108, 123702 (2010)CrossRef
14.
go back to reference Bahk, J-H, Bian, Z, Shakouri, A: Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials. Phys. Rev. B 87, 075204 (2013)CrossRef Bahk, J-H, Bian, Z, Shakouri, A: Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials. Phys. Rev. B 87, 075204 (2013)CrossRef
15.
go back to reference N. W. Ashcroft and N. D. Mermin, Solid State Physics, Chap. 12–13 (Thomson Learning Inc., 1976). N. W. Ashcroft and N. D. Mermin, Solid State Physics, Chap. 12–13 (Thomson Learning Inc., 1976).
16.
go back to reference Shakouri, A, Zebarjadi, M: Nanoengineered materials for thermoelectric energy conversion. In: Volz, S (ed.) Thermal Nanosystems and Nanomaterials. Springer, Berlin (2009) Shakouri, A, Zebarjadi, M: Nanoengineered materials for thermoelectric energy conversion. In: Volz, S (ed.) Thermal Nanosystems and Nanomaterials. Springer, Berlin (2009)
17.
go back to reference H. B. Callen, Thermodynamics and an introduction to thermostatistics, 2nd Ed. (John Wiley & Sons, 1985). H. B. Callen, Thermodynamics and an introduction to thermostatistics, 2nd Ed. (John Wiley & Sons, 1985).
18.
go back to reference Kim, R, Datta, S, Lundstrom, MS: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105, 034506 (2009)CrossRef Kim, R, Datta, S, Lundstrom, MS: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105, 034506 (2009)CrossRef
19.
go back to reference M. Lundstrom, Fundamentals of Carrier Transport, 2nd Ed. (Cambridge Univ. Press, 2000). M. Lundstrom, Fundamentals of Carrier Transport, 2nd Ed. (Cambridge Univ. Press, 2000).
20.
go back to reference Vineis, CJ, Harman, TC, Calawa, SD, Walsh, MP, Reeder, RE, Singh, R, Shakouri, A: Carrier concentration and temperature dependence of the electronic transport properties of epitaxial PbTe and PbTe/PbSe nanodot superlattices. Phys. Rev. B 77, 235202 (2008)CrossRef Vineis, CJ, Harman, TC, Calawa, SD, Walsh, MP, Reeder, RE, Singh, R, Shakouri, A: Carrier concentration and temperature dependence of the electronic transport properties of epitaxial PbTe and PbTe/PbSe nanodot superlattices. Phys. Rev. B 77, 235202 (2008)CrossRef
21.
go back to reference Nolas, GS, Goldsmid, HJ: “Thermal conductivity of semiconductors”, Chap.1.4. In: Tritt, TM (ed.) Thermal Conductivity: Theory, Properties, and Applications. Kluwer, New York (2004) Nolas, GS, Goldsmid, HJ: “Thermal conductivity of semiconductors”, Chap.1.4. In: Tritt, TM (ed.) Thermal Conductivity: Theory, Properties, and Applications. Kluwer, New York (2004)
22.
go back to reference Schiff, LI: Quantum Mechanics. McGraw-Hill, New York (1949) Schiff, LI: Quantum Mechanics. McGraw-Hill, New York (1949)
23.
go back to reference Griffiths, DJ: Introduction to Quantum Mechanics. Prentice Hall, London (1995)MATH Griffiths, DJ: Introduction to Quantum Mechanics. Prentice Hall, London (1995)MATH
24.
go back to reference Zebarjadi, M, Esfarjani, K, Shakouri, A, Bahk, J-H, Bian, Z, Zeng, G, Bowers, J, Lu, H, Zide, J, Gossard, A: Effect of nanoparticle scattering on thermoelectric power factor. Appl. Phys. Lett. 94, 202105 (2009)CrossRef Zebarjadi, M, Esfarjani, K, Shakouri, A, Bahk, J-H, Bian, Z, Zeng, G, Bowers, J, Lu, H, Zide, J, Gossard, A: Effect of nanoparticle scattering on thermoelectric power factor. Appl. Phys. Lett. 94, 202105 (2009)CrossRef
25.
go back to reference Bahk, J-H, Bian, Z, Zebarjadi, M, Zide, JMO, Lu, H, Xu, D, Feser, JP, Zeng, G, Majumdar, A, Gossard, AC, Shakouri, A, Bowers, JE: Thermoelectric figure of merit of (In0.53Ga0.47As)0.8(In0.52Al0.48As)0.2 III-V semiconductor alloys. Phys. Rev. B 81, 235209 (2010)CrossRef Bahk, J-H, Bian, Z, Zebarjadi, M, Zide, JMO, Lu, H, Xu, D, Feser, JP, Zeng, G, Majumdar, A, Gossard, AC, Shakouri, A, Bowers, JE: Thermoelectric figure of merit of (In0.53Ga0.47As)0.8(In0.52Al0.48As)0.2 III-V semiconductor alloys. Phys. Rev. B 81, 235209 (2010)CrossRef
26.
go back to reference Palmstrøm, CJ, Tabatabaie, N, Allen, SJ: Epitaxial growth of ErAs on (100) GaAs. Appl. Phys. Lett. 53, 2608 (1988)CrossRef Palmstrøm, CJ, Tabatabaie, N, Allen, SJ: Epitaxial growth of ErAs on (100) GaAs. Appl. Phys. Lett. 53, 2608 (1988)CrossRef
27.
go back to reference Driscoll, DC, Hanson, MP, Mueller, E, Gossard, AC: Growth and microstructure of semimetallic ErAs particles embedded in an In0.53Ga0.47As matrix. J. Cryst. Growth 251, 243 (2003)CrossRef Driscoll, DC, Hanson, MP, Mueller, E, Gossard, AC: Growth and microstructure of semimetallic ErAs particles embedded in an In0.53Ga0.47As matrix. J. Cryst. Growth 251, 243 (2003)CrossRef
28.
go back to reference Klenov, DO, Driscoll, DC, Gossard, AC, Stemmer, S: Scanning transmission electron microscopy of ErAs nanoparticles embedded in epitaxial In0.53Ga0.47As layers. Appl. Phys. Lett. 86, 111912 (2005)CrossRef Klenov, DO, Driscoll, DC, Gossard, AC, Stemmer, S: Scanning transmission electron microscopy of ErAs nanoparticles embedded in epitaxial In0.53Ga0.47As layers. Appl. Phys. Lett. 86, 111912 (2005)CrossRef
29.
go back to reference Zide, JM, Klenov, DO, Stemmer, S, Gossard, AC, Zeng, G, Bowers, JE, Vashaee, D, Shakouri, A: Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles. Appl. Phys. Lett. 87, 112102 (2005)CrossRef Zide, JM, Klenov, DO, Stemmer, S, Gossard, AC, Zeng, G, Bowers, JE, Vashaee, D, Shakouri, A: Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles. Appl. Phys. Lett. 87, 112102 (2005)CrossRef
30.
go back to reference Driscoll, DC, Hanson, M, Kadow, C, Gossard, AC: Transition to insulating behavior in the metal–semiconductor digital composite ErAs:InGaAs. J. Vac. Sci. Technol. B 19, 1631 (2001)CrossRef Driscoll, DC, Hanson, M, Kadow, C, Gossard, AC: Transition to insulating behavior in the metal–semiconductor digital composite ErAs:InGaAs. J. Vac. Sci. Technol. B 19, 1631 (2001)CrossRef
31.
go back to reference Burke, PG, Lu, H, Rudawski, NG, Gossard, AC, Bahk, J-H, Bowers, JE: Electrical properties of Er-doped In0.53Ga0.47As. J. Vac. Sci. Technol. B 29(3), 03C117 (2011)CrossRef Burke, PG, Lu, H, Rudawski, NG, Gossard, AC, Bahk, J-H, Bowers, JE: Electrical properties of Er-doped In0.53Ga0.47As. J. Vac. Sci. Technol. B 29(3), 03C117 (2011)CrossRef
32.
go back to reference Dorn, A, Peter, M, Kicin, S, Ihn, T, Ensslin, K, Driscoll, D, Gossard, AC: Charge tunable ErAs islands for backgate isolation in AlGaAs heterostructures. Appl. Phys. Lett. 82, 2631 (2003)CrossRef Dorn, A, Peter, M, Kicin, S, Ihn, T, Ensslin, K, Driscoll, D, Gossard, AC: Charge tunable ErAs islands for backgate isolation in AlGaAs heterostructures. Appl. Phys. Lett. 82, 2631 (2003)CrossRef
33.
go back to reference Kadow, C, Fleischer, SB, Ibbetson, JP, Bowers, JE, Gossard, AC: Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics. Appl. Phys. Lett. 75, 3548 (1999)CrossRef Kadow, C, Fleischer, SB, Ibbetson, JP, Bowers, JE, Gossard, AC: Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics. Appl. Phys. Lett. 75, 3548 (1999)CrossRef
34.
go back to reference Pohl, P, Renner, FH, Eckardt, M, Schwanhausser, A, Friedrich, A, Yuksekdag, O, Malzer, S, Dohler, GH, Kiesel, P, Driscoll, D, Hanson, M, Gossard, AC: Enhanced recombination tunneling in GaAs pn junctions containing low-temperature-grown-GaAs and ErAs layers. Appl. Phys. Lett. 83, 4035 (2003)CrossRef Pohl, P, Renner, FH, Eckardt, M, Schwanhausser, A, Friedrich, A, Yuksekdag, O, Malzer, S, Dohler, GH, Kiesel, P, Driscoll, D, Hanson, M, Gossard, AC: Enhanced recombination tunneling in GaAs pn junctions containing low-temperature-grown-GaAs and ErAs layers. Appl. Phys. Lett. 83, 4035 (2003)CrossRef
35.
go back to reference Cahill, DG, Goodson, K, Majumdar, A: Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 124, 223 (2002)CrossRef Cahill, DG, Goodson, K, Majumdar, A: Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 124, 223 (2002)CrossRef
36.
go back to reference Bahk, J-H: “Electron transport in ErAs:InGa(Al)As metal/semiconductor nanocomposites for thermoelectric power generation,” Ph.D. thesis, UC Santa Barbara, 2010. Bahk, J-H: “Electron transport in ErAs:InGa(Al)As metal/semiconductor nanocomposites for thermoelectric power generation,” Ph.D. thesis, UC Santa Barbara, 2010.
37.
go back to reference Ravich, YI: “Selective carrier scattering in thermoelectric materials”, Chap. 7. In: Rowe, DM (ed.) CRC Handbook of Thermoelectrics, pp. 67–81. CRC Press, Boca Raton, FL (1995) Ravich, YI: “Selective carrier scattering in thermoelectric materials”, Chap. 7. In: Rowe, DM (ed.) CRC Handbook of Thermoelectrics, pp. 67–81. CRC Press, Boca Raton, FL (1995)
38.
go back to reference Bilc, DI, Mahanti, SD, Kanatzidis, MG: Electronic transport properties of PbTe and AgPbmSbTe2+m systems. Phys. Rev. B 74, 125202 (2006)CrossRef Bilc, DI, Mahanti, SD, Kanatzidis, MG: Electronic transport properties of PbTe and AgPbmSbTe2+m systems. Phys. Rev. B 74, 125202 (2006)CrossRef
39.
go back to reference Ravich, YI, Efimova, BA, Tamarchenko, VI: Scattering of current carriers and transport phenomena in lead chalcogenides. Phys. Stat. Sol. B. 43, 11–33 (1971)CrossRef Ravich, YI, Efimova, BA, Tamarchenko, VI: Scattering of current carriers and transport phenomena in lead chalcogenides. Phys. Stat. Sol. B. 43, 11–33 (1971)CrossRef
40.
41.
go back to reference Shakouri, A, Bowers, JE: Heterostructure integrated thermionic coolers. Appl. Phys. Lett. 71, 1234 (1997)CrossRef Shakouri, A, Bowers, JE: Heterostructure integrated thermionic coolers. Appl. Phys. Lett. 71, 1234 (1997)CrossRef
42.
go back to reference Shakouri, A., Labounty, C., Abraham, P., Piprek, J., Bowers, J.E.: Mater. Res. Soc. Proc., 545, 449– 45 (Mater. Res. Soc., Pittsburgh, 1999). Shakouri, A., Labounty, C., Abraham, P., Piprek, J., Bowers, J.E.: Mater. Res. Soc. Proc., 545, 449– 45 (Mater. Res. Soc., Pittsburgh, 1999).
43.
go back to reference Vashaee, D, Shakouri, A: Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 92, 106103 (2004)CrossRef Vashaee, D, Shakouri, A: Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 92, 106103 (2004)CrossRef
44.
go back to reference Kim, R, Jeong, C, Lundstrom, MS: On momentum conservation and thermionic emission cooling. J. Appl. Phys. 107, 054502 (2010)CrossRef Kim, R, Jeong, C, Lundstrom, MS: On momentum conservation and thermionic emission cooling. J. Appl. Phys. 107, 054502 (2010)CrossRef
45.
go back to reference Nolas, GS, Sharp, J, Goldsmid, HJ: Thermoelectrics: basic principles and new materials developments. Springer, New York (2001)CrossRef Nolas, GS, Sharp, J, Goldsmid, HJ: Thermoelectrics: basic principles and new materials developments. Springer, New York (2001)CrossRef
46.
go back to reference Smith, RA: Semiconductors, 2nd edn. Cambridge University Press, London (1979) Smith, RA: Semiconductors, 2nd edn. Cambridge University Press, London (1979)
47.
go back to reference Biswas, K, He, J, Blum, ID, Wu, C, Hogan, TP, Seidman, DN, Dravid, VP, Kanatzidis, MG: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (Sep. 2012)CrossRef Biswas, K, He, J, Blum, ID, Wu, C, Hogan, TP, Seidman, DN, Dravid, VP, Kanatzidis, MG: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (Sep. 2012)CrossRef
48.
go back to reference Zaitsev, VK, Fedorov, MI, Gurieva, EA, Eremin, IS, Konstantinov, PP, Samunin, AY, Vedernikov, MV: Highly effective Mg2Si1-xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006)CrossRef Zaitsev, VK, Fedorov, MI, Gurieva, EA, Eremin, IS, Konstantinov, PP, Samunin, AY, Vedernikov, MV: Highly effective Mg2Si1-xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006)CrossRef
49.
go back to reference Zhang, Q, He, J, Zhu, TJ, Zhang, SN, Zhao, XB, Tritt, TM: High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials. Appl. Phys. Lett. 93, 102109 (2008)CrossRef Zhang, Q, He, J, Zhu, TJ, Zhang, SN, Zhao, XB, Tritt, TM: High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials. Appl. Phys. Lett. 93, 102109 (2008)CrossRef
50.
go back to reference Tani, J, Kido, H: Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B 364, 218–224 (2005)CrossRef Tani, J, Kido, H: Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B 364, 218–224 (2005)CrossRef
51.
go back to reference Akasaka, M, Iida, T, Matsumoto, A, Yamanaka, K, Takanashi, Y, Imai, T, Hamada, N: The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method. J. Appl. Phys. 104, 013703 (2008)CrossRef Akasaka, M, Iida, T, Matsumoto, A, Yamanaka, K, Takanashi, Y, Imai, T, Hamada, N: The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method. J. Appl. Phys. 104, 013703 (2008)CrossRef
52.
go back to reference Bergman, DJ, Levy, O: Thermoelectric properties of a composite medium. J. Appl. Phys. 70(11), 6821–6833 (1991)CrossRef Bergman, DJ, Levy, O: Thermoelectric properties of a composite medium. J. Appl. Phys. 70(11), 6821–6833 (1991)CrossRef
53.
go back to reference Friedel, J: On some electrical and magnetic properties of metallic solid solutions. Can. J. Phys. 34, 1190–1211 (1956)CrossRef Friedel, J: On some electrical and magnetic properties of metallic solid solutions. Can. J. Phys. 34, 1190–1211 (1956)CrossRef
54.
go back to reference Ahmad, S, Hoang, K, Mahanti, SD: Ab initio study of deep defect states in narrow band-gap semiconductors: Group III impurities in PbTe. Phys. Rev. Lett. 96, 056403 (2006)CrossRef Ahmad, S, Hoang, K, Mahanti, SD: Ab initio study of deep defect states in narrow band-gap semiconductors: Group III impurities in PbTe. Phys. Rev. Lett. 96, 056403 (2006)CrossRef
55.
go back to reference Zhitinskaya, MK, Nemov, SA, Svechnikova, TE: Phys. Solid State 40, 1297 (1998)CrossRef Zhitinskaya, MK, Nemov, SA, Svechnikova, TE: Phys. Solid State 40, 1297 (1998)CrossRef
56.
go back to reference Heremans, JP, Wiendlocha, B, Chamoire, AM: Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012)CrossRef Heremans, JP, Wiendlocha, B, Chamoire, AM: Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012)CrossRef
Metadata
Title
Electron Transport Engineering by Nanostructures for Efficient Thermoelectrics
Authors
Je-Hyeong Bahk
Ali Shakouri
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-02012-9_2