Skip to main content

2014 | OriginalPaper | Buchkapitel

2. Electron Transport Engineering by Nanostructures for Efficient Thermoelectrics

verfasst von : Je-Hyeong Bahk, Ali Shakouri

Erschienen in: Nanoscale Thermoelectrics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We theoretically investigate nanoscale structures such as nanoparticles embedded in bulk materials as a means of improving the thermoelectric energy conversion efficiency. We focus on the impact of such nanostructures on the electron transport in the host material, and discuss the enhancement of the thermoelectric power factor and thus the figure of merit. Nanostructures embedded in thermoelectric materials can create potential variations at the nanoscale due to the hetero-interfaces, which can alter the transport of charge carriers in the host material to enhance the Seebeck coefficient and the power factor. The energy-dependent electron scattering times induced by nanoparticles are calculated using the partial wave method. Thermoelectric transport properties are then calculated based on the linearized Boltzmann transport theory with the relaxation time approximation for various thermoelectric materials such as ErAs:InGaAs, PbTe, and Mg2Si. The effects of different kinds of nanoparticles including single-phase ionized metallic nanoparticles and core–shell nanoparticles embedded in semiconductors are investigated in these semiconductors. Finally the electron energy filtering scheme is discussed to further enhance the thermoelectric energy conversion efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bell, LE: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)CrossRef Bell, LE: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)CrossRef
2.
Zurück zum Zitat Chen, G, Shakouri, A: Heat transfer in nanostructures for solid-state energy conversion. J. Heat Transf. 124(2), 242–252 (2002)CrossRef Chen, G, Shakouri, A: Heat transfer in nanostructures for solid-state energy conversion. J. Heat Transf. 124(2), 242–252 (2002)CrossRef
4.
Zurück zum Zitat Snyder, GJ, Toberer, ES: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)CrossRef Snyder, GJ, Toberer, ES: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)CrossRef
5.
Zurück zum Zitat Vineis, CJ, Shakouri, A, Majumdar, A, Kanatzidis, MG: Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010)CrossRef Vineis, CJ, Shakouri, A, Majumdar, A, Kanatzidis, MG: Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010)CrossRef
6.
Zurück zum Zitat Shakouri, A: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011)CrossRef Shakouri, A: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011)CrossRef
7.
Zurück zum Zitat Pei, Y, Shi, X, LaLonde, A, Wang, H, Chen, L, Snyder, GJ: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (May 2011)CrossRef Pei, Y, Shi, X, LaLonde, A, Wang, H, Chen, L, Snyder, GJ: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (May 2011)CrossRef
8.
Zurück zum Zitat Liu, W, Tan, X, Yin, K, Liu, H, Tang, X, Shi, J, Zhang, Q, Uher, C: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (April 2012)CrossRef Liu, W, Tan, X, Yin, K, Liu, H, Tang, X, Shi, J, Zhang, Q, Uher, C: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (April 2012)CrossRef
9.
Zurück zum Zitat Heremans, JP, Jovovic, V, Toberer, ES, Saramat, A, Kurosaki, K, Charoenphakdee, K, Yamanaka, S, Snyder, JF: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)CrossRef Heremans, JP, Jovovic, V, Toberer, ES, Saramat, A, Kurosaki, K, Charoenphakdee, K, Yamanaka, S, Snyder, JF: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)CrossRef
10.
Zurück zum Zitat Zebarjadi, M, Joshi, G, Zhu, G, Yu, B, Minnich, A, Lan, Y, Wang, X, Dresselhaus, M, Ren, Z, Chen, G: Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 11, 2225–2230 (2011)CrossRef Zebarjadi, M, Joshi, G, Zhu, G, Yu, B, Minnich, A, Lan, Y, Wang, X, Dresselhaus, M, Ren, Z, Chen, G: Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 11, 2225–2230 (2011)CrossRef
11.
Zurück zum Zitat Bahk, J-H, Bian, Z, Zebarjadi, M, Santhanam, P, Ram, R, Shakouri, A: Thermoelectric power factor enhancement by ionized nanoparticle scattering. Appl. Phys. Lett. 99, 072118 (2011)CrossRef Bahk, J-H, Bian, Z, Zebarjadi, M, Santhanam, P, Ram, R, Shakouri, A: Thermoelectric power factor enhancement by ionized nanoparticle scattering. Appl. Phys. Lett. 99, 072118 (2011)CrossRef
12.
Zurück zum Zitat Bahk, J-H, Santhanam, P, Bian, Z, Ram, R, Shakouri, A: Resonant carrier scattering by core-shell nanoparticles for thermoelectric power factor enhancement. Appl. Phys. Lett. 100, 012102 (2012)CrossRef Bahk, J-H, Santhanam, P, Bian, Z, Ram, R, Shakouri, A: Resonant carrier scattering by core-shell nanoparticles for thermoelectric power factor enhancement. Appl. Phys. Lett. 100, 012102 (2012)CrossRef
13.
Zurück zum Zitat Zide, JMO, Bahk, J-H, Singh, R, Zebarjadi, M, Zeng, G, Lu, H, Feser, JP, Xu, D, Singer, SL, Bian, ZX, Majumdar, A, Bowers, JE, Shakouri, A, Gossard, AC: High efficiency semimetal/semiconductor nanocomposite thermoelectric materials. J. Appl. Phys. 108, 123702 (2010)CrossRef Zide, JMO, Bahk, J-H, Singh, R, Zebarjadi, M, Zeng, G, Lu, H, Feser, JP, Xu, D, Singer, SL, Bian, ZX, Majumdar, A, Bowers, JE, Shakouri, A, Gossard, AC: High efficiency semimetal/semiconductor nanocomposite thermoelectric materials. J. Appl. Phys. 108, 123702 (2010)CrossRef
14.
Zurück zum Zitat Bahk, J-H, Bian, Z, Shakouri, A: Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials. Phys. Rev. B 87, 075204 (2013)CrossRef Bahk, J-H, Bian, Z, Shakouri, A: Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials. Phys. Rev. B 87, 075204 (2013)CrossRef
15.
Zurück zum Zitat N. W. Ashcroft and N. D. Mermin, Solid State Physics, Chap. 12–13 (Thomson Learning Inc., 1976). N. W. Ashcroft and N. D. Mermin, Solid State Physics, Chap. 12–13 (Thomson Learning Inc., 1976).
16.
Zurück zum Zitat Shakouri, A, Zebarjadi, M: Nanoengineered materials for thermoelectric energy conversion. In: Volz, S (ed.) Thermal Nanosystems and Nanomaterials. Springer, Berlin (2009) Shakouri, A, Zebarjadi, M: Nanoengineered materials for thermoelectric energy conversion. In: Volz, S (ed.) Thermal Nanosystems and Nanomaterials. Springer, Berlin (2009)
17.
Zurück zum Zitat H. B. Callen, Thermodynamics and an introduction to thermostatistics, 2nd Ed. (John Wiley & Sons, 1985). H. B. Callen, Thermodynamics and an introduction to thermostatistics, 2nd Ed. (John Wiley & Sons, 1985).
18.
Zurück zum Zitat Kim, R, Datta, S, Lundstrom, MS: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105, 034506 (2009)CrossRef Kim, R, Datta, S, Lundstrom, MS: Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105, 034506 (2009)CrossRef
19.
Zurück zum Zitat M. Lundstrom, Fundamentals of Carrier Transport, 2nd Ed. (Cambridge Univ. Press, 2000). M. Lundstrom, Fundamentals of Carrier Transport, 2nd Ed. (Cambridge Univ. Press, 2000).
20.
Zurück zum Zitat Vineis, CJ, Harman, TC, Calawa, SD, Walsh, MP, Reeder, RE, Singh, R, Shakouri, A: Carrier concentration and temperature dependence of the electronic transport properties of epitaxial PbTe and PbTe/PbSe nanodot superlattices. Phys. Rev. B 77, 235202 (2008)CrossRef Vineis, CJ, Harman, TC, Calawa, SD, Walsh, MP, Reeder, RE, Singh, R, Shakouri, A: Carrier concentration and temperature dependence of the electronic transport properties of epitaxial PbTe and PbTe/PbSe nanodot superlattices. Phys. Rev. B 77, 235202 (2008)CrossRef
21.
Zurück zum Zitat Nolas, GS, Goldsmid, HJ: “Thermal conductivity of semiconductors”, Chap.1.4. In: Tritt, TM (ed.) Thermal Conductivity: Theory, Properties, and Applications. Kluwer, New York (2004) Nolas, GS, Goldsmid, HJ: “Thermal conductivity of semiconductors”, Chap.1.4. In: Tritt, TM (ed.) Thermal Conductivity: Theory, Properties, and Applications. Kluwer, New York (2004)
22.
Zurück zum Zitat Schiff, LI: Quantum Mechanics. McGraw-Hill, New York (1949) Schiff, LI: Quantum Mechanics. McGraw-Hill, New York (1949)
23.
Zurück zum Zitat Griffiths, DJ: Introduction to Quantum Mechanics. Prentice Hall, London (1995)MATH Griffiths, DJ: Introduction to Quantum Mechanics. Prentice Hall, London (1995)MATH
24.
Zurück zum Zitat Zebarjadi, M, Esfarjani, K, Shakouri, A, Bahk, J-H, Bian, Z, Zeng, G, Bowers, J, Lu, H, Zide, J, Gossard, A: Effect of nanoparticle scattering on thermoelectric power factor. Appl. Phys. Lett. 94, 202105 (2009)CrossRef Zebarjadi, M, Esfarjani, K, Shakouri, A, Bahk, J-H, Bian, Z, Zeng, G, Bowers, J, Lu, H, Zide, J, Gossard, A: Effect of nanoparticle scattering on thermoelectric power factor. Appl. Phys. Lett. 94, 202105 (2009)CrossRef
25.
Zurück zum Zitat Bahk, J-H, Bian, Z, Zebarjadi, M, Zide, JMO, Lu, H, Xu, D, Feser, JP, Zeng, G, Majumdar, A, Gossard, AC, Shakouri, A, Bowers, JE: Thermoelectric figure of merit of (In0.53Ga0.47As)0.8(In0.52Al0.48As)0.2 III-V semiconductor alloys. Phys. Rev. B 81, 235209 (2010)CrossRef Bahk, J-H, Bian, Z, Zebarjadi, M, Zide, JMO, Lu, H, Xu, D, Feser, JP, Zeng, G, Majumdar, A, Gossard, AC, Shakouri, A, Bowers, JE: Thermoelectric figure of merit of (In0.53Ga0.47As)0.8(In0.52Al0.48As)0.2 III-V semiconductor alloys. Phys. Rev. B 81, 235209 (2010)CrossRef
26.
Zurück zum Zitat Palmstrøm, CJ, Tabatabaie, N, Allen, SJ: Epitaxial growth of ErAs on (100) GaAs. Appl. Phys. Lett. 53, 2608 (1988)CrossRef Palmstrøm, CJ, Tabatabaie, N, Allen, SJ: Epitaxial growth of ErAs on (100) GaAs. Appl. Phys. Lett. 53, 2608 (1988)CrossRef
27.
Zurück zum Zitat Driscoll, DC, Hanson, MP, Mueller, E, Gossard, AC: Growth and microstructure of semimetallic ErAs particles embedded in an In0.53Ga0.47As matrix. J. Cryst. Growth 251, 243 (2003)CrossRef Driscoll, DC, Hanson, MP, Mueller, E, Gossard, AC: Growth and microstructure of semimetallic ErAs particles embedded in an In0.53Ga0.47As matrix. J. Cryst. Growth 251, 243 (2003)CrossRef
28.
Zurück zum Zitat Klenov, DO, Driscoll, DC, Gossard, AC, Stemmer, S: Scanning transmission electron microscopy of ErAs nanoparticles embedded in epitaxial In0.53Ga0.47As layers. Appl. Phys. Lett. 86, 111912 (2005)CrossRef Klenov, DO, Driscoll, DC, Gossard, AC, Stemmer, S: Scanning transmission electron microscopy of ErAs nanoparticles embedded in epitaxial In0.53Ga0.47As layers. Appl. Phys. Lett. 86, 111912 (2005)CrossRef
29.
Zurück zum Zitat Zide, JM, Klenov, DO, Stemmer, S, Gossard, AC, Zeng, G, Bowers, JE, Vashaee, D, Shakouri, A: Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles. Appl. Phys. Lett. 87, 112102 (2005)CrossRef Zide, JM, Klenov, DO, Stemmer, S, Gossard, AC, Zeng, G, Bowers, JE, Vashaee, D, Shakouri, A: Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles. Appl. Phys. Lett. 87, 112102 (2005)CrossRef
30.
Zurück zum Zitat Driscoll, DC, Hanson, M, Kadow, C, Gossard, AC: Transition to insulating behavior in the metal–semiconductor digital composite ErAs:InGaAs. J. Vac. Sci. Technol. B 19, 1631 (2001)CrossRef Driscoll, DC, Hanson, M, Kadow, C, Gossard, AC: Transition to insulating behavior in the metal–semiconductor digital composite ErAs:InGaAs. J. Vac. Sci. Technol. B 19, 1631 (2001)CrossRef
31.
Zurück zum Zitat Burke, PG, Lu, H, Rudawski, NG, Gossard, AC, Bahk, J-H, Bowers, JE: Electrical properties of Er-doped In0.53Ga0.47As. J. Vac. Sci. Technol. B 29(3), 03C117 (2011)CrossRef Burke, PG, Lu, H, Rudawski, NG, Gossard, AC, Bahk, J-H, Bowers, JE: Electrical properties of Er-doped In0.53Ga0.47As. J. Vac. Sci. Technol. B 29(3), 03C117 (2011)CrossRef
32.
Zurück zum Zitat Dorn, A, Peter, M, Kicin, S, Ihn, T, Ensslin, K, Driscoll, D, Gossard, AC: Charge tunable ErAs islands for backgate isolation in AlGaAs heterostructures. Appl. Phys. Lett. 82, 2631 (2003)CrossRef Dorn, A, Peter, M, Kicin, S, Ihn, T, Ensslin, K, Driscoll, D, Gossard, AC: Charge tunable ErAs islands for backgate isolation in AlGaAs heterostructures. Appl. Phys. Lett. 82, 2631 (2003)CrossRef
33.
Zurück zum Zitat Kadow, C, Fleischer, SB, Ibbetson, JP, Bowers, JE, Gossard, AC: Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics. Appl. Phys. Lett. 75, 3548 (1999)CrossRef Kadow, C, Fleischer, SB, Ibbetson, JP, Bowers, JE, Gossard, AC: Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics. Appl. Phys. Lett. 75, 3548 (1999)CrossRef
34.
Zurück zum Zitat Pohl, P, Renner, FH, Eckardt, M, Schwanhausser, A, Friedrich, A, Yuksekdag, O, Malzer, S, Dohler, GH, Kiesel, P, Driscoll, D, Hanson, M, Gossard, AC: Enhanced recombination tunneling in GaAs pn junctions containing low-temperature-grown-GaAs and ErAs layers. Appl. Phys. Lett. 83, 4035 (2003)CrossRef Pohl, P, Renner, FH, Eckardt, M, Schwanhausser, A, Friedrich, A, Yuksekdag, O, Malzer, S, Dohler, GH, Kiesel, P, Driscoll, D, Hanson, M, Gossard, AC: Enhanced recombination tunneling in GaAs pn junctions containing low-temperature-grown-GaAs and ErAs layers. Appl. Phys. Lett. 83, 4035 (2003)CrossRef
35.
Zurück zum Zitat Cahill, DG, Goodson, K, Majumdar, A: Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 124, 223 (2002)CrossRef Cahill, DG, Goodson, K, Majumdar, A: Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 124, 223 (2002)CrossRef
36.
Zurück zum Zitat Bahk, J-H: “Electron transport in ErAs:InGa(Al)As metal/semiconductor nanocomposites for thermoelectric power generation,” Ph.D. thesis, UC Santa Barbara, 2010. Bahk, J-H: “Electron transport in ErAs:InGa(Al)As metal/semiconductor nanocomposites for thermoelectric power generation,” Ph.D. thesis, UC Santa Barbara, 2010.
37.
Zurück zum Zitat Ravich, YI: “Selective carrier scattering in thermoelectric materials”, Chap. 7. In: Rowe, DM (ed.) CRC Handbook of Thermoelectrics, pp. 67–81. CRC Press, Boca Raton, FL (1995) Ravich, YI: “Selective carrier scattering in thermoelectric materials”, Chap. 7. In: Rowe, DM (ed.) CRC Handbook of Thermoelectrics, pp. 67–81. CRC Press, Boca Raton, FL (1995)
38.
Zurück zum Zitat Bilc, DI, Mahanti, SD, Kanatzidis, MG: Electronic transport properties of PbTe and AgPbmSbTe2+m systems. Phys. Rev. B 74, 125202 (2006)CrossRef Bilc, DI, Mahanti, SD, Kanatzidis, MG: Electronic transport properties of PbTe and AgPbmSbTe2+m systems. Phys. Rev. B 74, 125202 (2006)CrossRef
39.
Zurück zum Zitat Ravich, YI, Efimova, BA, Tamarchenko, VI: Scattering of current carriers and transport phenomena in lead chalcogenides. Phys. Stat. Sol. B. 43, 11–33 (1971)CrossRef Ravich, YI, Efimova, BA, Tamarchenko, VI: Scattering of current carriers and transport phenomena in lead chalcogenides. Phys. Stat. Sol. B. 43, 11–33 (1971)CrossRef
40.
41.
Zurück zum Zitat Shakouri, A, Bowers, JE: Heterostructure integrated thermionic coolers. Appl. Phys. Lett. 71, 1234 (1997)CrossRef Shakouri, A, Bowers, JE: Heterostructure integrated thermionic coolers. Appl. Phys. Lett. 71, 1234 (1997)CrossRef
42.
Zurück zum Zitat Shakouri, A., Labounty, C., Abraham, P., Piprek, J., Bowers, J.E.: Mater. Res. Soc. Proc., 545, 449– 45 (Mater. Res. Soc., Pittsburgh, 1999). Shakouri, A., Labounty, C., Abraham, P., Piprek, J., Bowers, J.E.: Mater. Res. Soc. Proc., 545, 449– 45 (Mater. Res. Soc., Pittsburgh, 1999).
43.
Zurück zum Zitat Vashaee, D, Shakouri, A: Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 92, 106103 (2004)CrossRef Vashaee, D, Shakouri, A: Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 92, 106103 (2004)CrossRef
44.
Zurück zum Zitat Kim, R, Jeong, C, Lundstrom, MS: On momentum conservation and thermionic emission cooling. J. Appl. Phys. 107, 054502 (2010)CrossRef Kim, R, Jeong, C, Lundstrom, MS: On momentum conservation and thermionic emission cooling. J. Appl. Phys. 107, 054502 (2010)CrossRef
45.
Zurück zum Zitat Nolas, GS, Sharp, J, Goldsmid, HJ: Thermoelectrics: basic principles and new materials developments. Springer, New York (2001)CrossRef Nolas, GS, Sharp, J, Goldsmid, HJ: Thermoelectrics: basic principles and new materials developments. Springer, New York (2001)CrossRef
46.
Zurück zum Zitat Smith, RA: Semiconductors, 2nd edn. Cambridge University Press, London (1979) Smith, RA: Semiconductors, 2nd edn. Cambridge University Press, London (1979)
47.
Zurück zum Zitat Biswas, K, He, J, Blum, ID, Wu, C, Hogan, TP, Seidman, DN, Dravid, VP, Kanatzidis, MG: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (Sep. 2012)CrossRef Biswas, K, He, J, Blum, ID, Wu, C, Hogan, TP, Seidman, DN, Dravid, VP, Kanatzidis, MG: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (Sep. 2012)CrossRef
48.
Zurück zum Zitat Zaitsev, VK, Fedorov, MI, Gurieva, EA, Eremin, IS, Konstantinov, PP, Samunin, AY, Vedernikov, MV: Highly effective Mg2Si1-xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006)CrossRef Zaitsev, VK, Fedorov, MI, Gurieva, EA, Eremin, IS, Konstantinov, PP, Samunin, AY, Vedernikov, MV: Highly effective Mg2Si1-xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006)CrossRef
49.
Zurück zum Zitat Zhang, Q, He, J, Zhu, TJ, Zhang, SN, Zhao, XB, Tritt, TM: High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials. Appl. Phys. Lett. 93, 102109 (2008)CrossRef Zhang, Q, He, J, Zhu, TJ, Zhang, SN, Zhao, XB, Tritt, TM: High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials. Appl. Phys. Lett. 93, 102109 (2008)CrossRef
50.
Zurück zum Zitat Tani, J, Kido, H: Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B 364, 218–224 (2005)CrossRef Tani, J, Kido, H: Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B 364, 218–224 (2005)CrossRef
51.
Zurück zum Zitat Akasaka, M, Iida, T, Matsumoto, A, Yamanaka, K, Takanashi, Y, Imai, T, Hamada, N: The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method. J. Appl. Phys. 104, 013703 (2008)CrossRef Akasaka, M, Iida, T, Matsumoto, A, Yamanaka, K, Takanashi, Y, Imai, T, Hamada, N: The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method. J. Appl. Phys. 104, 013703 (2008)CrossRef
52.
Zurück zum Zitat Bergman, DJ, Levy, O: Thermoelectric properties of a composite medium. J. Appl. Phys. 70(11), 6821–6833 (1991)CrossRef Bergman, DJ, Levy, O: Thermoelectric properties of a composite medium. J. Appl. Phys. 70(11), 6821–6833 (1991)CrossRef
53.
Zurück zum Zitat Friedel, J: On some electrical and magnetic properties of metallic solid solutions. Can. J. Phys. 34, 1190–1211 (1956)CrossRef Friedel, J: On some electrical and magnetic properties of metallic solid solutions. Can. J. Phys. 34, 1190–1211 (1956)CrossRef
54.
Zurück zum Zitat Ahmad, S, Hoang, K, Mahanti, SD: Ab initio study of deep defect states in narrow band-gap semiconductors: Group III impurities in PbTe. Phys. Rev. Lett. 96, 056403 (2006)CrossRef Ahmad, S, Hoang, K, Mahanti, SD: Ab initio study of deep defect states in narrow band-gap semiconductors: Group III impurities in PbTe. Phys. Rev. Lett. 96, 056403 (2006)CrossRef
55.
Zurück zum Zitat Zhitinskaya, MK, Nemov, SA, Svechnikova, TE: Phys. Solid State 40, 1297 (1998)CrossRef Zhitinskaya, MK, Nemov, SA, Svechnikova, TE: Phys. Solid State 40, 1297 (1998)CrossRef
56.
Zurück zum Zitat Heremans, JP, Wiendlocha, B, Chamoire, AM: Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012)CrossRef Heremans, JP, Wiendlocha, B, Chamoire, AM: Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012)CrossRef
Metadaten
Titel
Electron Transport Engineering by Nanostructures for Efficient Thermoelectrics
verfasst von
Je-Hyeong Bahk
Ali Shakouri
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-02012-9_2