Skip to main content
Erschienen in:
Buchtitelbild

2014 | OriginalPaper | Buchkapitel

1. Thermoelectric Effects: Semiclassical and Quantum Approaches from the Boltzmann Transport Equation

verfasst von : Andrés Cantarero, F. Xavier Àlvarez

Erschienen in: Nanoscale Thermoelectrics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The thermoelectric efficiency of a material depends on its electronic and phononic properties. It is normally given in terms of the dimensionless figure of merit Z T = σ S 2 Tκ. The parameters involved in Z T are the electrical conductivity σ, the Seebeck coefficient S, and the thermal conductivity κ. The thermal conductivity has two contributions, κ = κ e + κ L , the electron thermal conductivity κ e and the lattice thermal conductivity κ L . In this chapter all these parameters will be deduced for metals and semiconductors, starting from the Boltzmann transport equation (BTE). The electrical conductivity, the Seebeck coefficient, and the electronic thermal conductivity will be obtained from the BTE for electrons. Similarly, the lattice or phonon thermal conductivity will be given from the BTE for phonons. The ab initio approaches to obtain both the electronic and phononic transport via the BTE will also be analyzed. All the theoretical studies are based on the relaxation time approximation. The expressions for the relaxation times for electrons and phonons will be discussed. The results will be particularized to nanostructures whenever is possible.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nag, B.R.: Electron Transport in Compound Semiconductors. Springer, Berlin (1980)CrossRef Nag, B.R.: Electron Transport in Compound Semiconductors. Springer, Berlin (1980)CrossRef
2.
Zurück zum Zitat Zimann, J.M.: Electrons and Phonons. Oxford University Press, London (1960) Zimann, J.M.: Electrons and Phonons. Oxford University Press, London (1960)
3.
Zurück zum Zitat Cantarero, A., Martinez-Pastor, J., Segura, A., Chevy, A.: Transport properties of bismuth sulfide single crystals. Phys. Rev. B 35, 9586–9590 (1987)CrossRef Cantarero, A., Martinez-Pastor, J., Segura, A., Chevy, A.: Transport properties of bismuth sulfide single crystals. Phys. Rev. B 35, 9586–9590 (1987)CrossRef
4.
Zurück zum Zitat Asen-Palmer, M., Bartkowski, K., Gmelin, E., Cardona, M., Zhernov, A.P., Inyushkin, A.V., Taldenkov, A., Ozhogin, V.I., Itoh, K.M., Haller, E.E.: Thermal conductivity of germanium crystals with different isotopic composition. Phys. Rev. B 56, 9431–9447 (1997)CrossRef Asen-Palmer, M., Bartkowski, K., Gmelin, E., Cardona, M., Zhernov, A.P., Inyushkin, A.V., Taldenkov, A., Ozhogin, V.I., Itoh, K.M., Haller, E.E.: Thermal conductivity of germanium crystals with different isotopic composition. Phys. Rev. B 56, 9431–9447 (1997)CrossRef
5.
Zurück zum Zitat de Tomas, C., Cantarero, A., Lopeandia, A.F., Alvarez, F.X.: Lattice thermal conductivity of silicon nanowires, J. Thermoelectricity 4, 11 (2013) de Tomas, C., Cantarero, A., Lopeandia, A.F., Alvarez, F.X.: Lattice thermal conductivity of silicon nanowires, J. Thermoelectricity 4, 11 (2013)
6.
Zurück zum Zitat Comas, F., Trallero-Giner, C., Cantarero, A.: Phonons and electron–phonon interaction in quantum wires. Phys. Rev. B 47, 7602–7605 (1993)CrossRef Comas, F., Trallero-Giner, C., Cantarero, A.: Phonons and electron–phonon interaction in quantum wires. Phys. Rev. B 47, 7602–7605 (1993)CrossRef
7.
Zurück zum Zitat Callaway, J.: Model for the lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)CrossRefMATH Callaway, J.: Model for the lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)CrossRefMATH
8.
Zurück zum Zitat Holland, M.G.: Analysis of lattice thermal conductivity. Phys. Rev. 132, 2461–271 (1963)CrossRef Holland, M.G.: Analysis of lattice thermal conductivity. Phys. Rev. 132, 2461–271 (1963)CrossRef
9.
Zurück zum Zitat Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)CrossRef Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)CrossRef
10.
Zurück zum Zitat Krumhansl, J.A.: Thermal conductivity of insulating crystals in the presence of normal processes. Proc. Phys. Soc. 85, 921–930 (1965)CrossRef Krumhansl, J.A.: Thermal conductivity of insulating crystals in the presence of normal processes. Proc. Phys. Soc. 85, 921–930 (1965)CrossRef
11.
Zurück zum Zitat Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)CrossRef Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)CrossRef
12.
Zurück zum Zitat Alvarez, F.X., Jou, D.: Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes. Appl. Phys. Lett. 90, 083109 (2007)CrossRef Alvarez, F.X., Jou, D.: Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes. Appl. Phys. Lett. 90, 083109 (2007)CrossRef
13.
Zurück zum Zitat Klemans, P.G.: In: Seitz, F., Turnbull, D. (eds.) Thermal Conductivity and Lattice Vibrational Modes. Solid State Physics, vol. 7, p. 1–98. Academic Press, New York (1958) Klemans, P.G.: In: Seitz, F., Turnbull, D. (eds.) Thermal Conductivity and Lattice Vibrational Modes. Solid State Physics, vol. 7, p. 1–98. Academic Press, New York (1958)
14.
Zurück zum Zitat Ward A., Broido D.A.: Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010)CrossRef Ward A., Broido D.A.: Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010)CrossRef
15.
Zurück zum Zitat Herring C.: Role of low-energy phonons in thermal conduction. Phys. Rev. 95, 954–965 (1954)CrossRefMATH Herring C.: Role of low-energy phonons in thermal conduction. Phys. Rev. 95, 954–965 (1954)CrossRefMATH
16.
Zurück zum Zitat Weber, W.: The adiabatic bond charge model for the phonons in diamond, Si, Ge and α − Sn. Phys. Rev. B 15, 4789–4803 (1977)CrossRef Weber, W.: The adiabatic bond charge model for the phonons in diamond, Si, Ge and α − Sn. Phys. Rev. B 15, 4789–4803 (1977)CrossRef
17.
Zurück zum Zitat Camacho, J., Cantarero, A.: Phonon dispersion in CdSe: the bond charge model. Phys. Stat. Sol. (b) 211, 233–236 (2000) Camacho, J., Cantarero, A.: Phonon dispersion in CdSe: the bond charge model. Phys. Stat. Sol. (b) 211, 233–236 (2000)
18.
Zurück zum Zitat Nilsson, G., Nelin, G.: Study of the homology between silicon and germanium by thermal-neutron spectrometry. Phys. Rev. B 6, 3777–3786 (1972)CrossRef Nilsson, G., Nelin, G.: Study of the homology between silicon and germanium by thermal-neutron spectrometry. Phys. Rev. B 6, 3777–3786 (1972)CrossRef
19.
Zurück zum Zitat Glassbrenner, C., Slack, G.: Thermal conductivity of Silicon and Germanium from 3 K to the melting point. Phys. Rev. A1058–A1069 (1964) Glassbrenner, C., Slack, G.: Thermal conductivity of Silicon and Germanium from 3 K to the melting point. Phys. Rev. A1058–A1069 (1964)
20.
Zurück zum Zitat Song, D., Chen, G.: Thermal conductivity of periodic microporous silicon films. Appl. Phys. Lett. 84, 687–690 (2004)CrossRef Song, D., Chen, G.: Thermal conductivity of periodic microporous silicon films. Appl. Phys. Lett. 84, 687–690 (2004)CrossRef
21.
Zurück zum Zitat Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2937 (2003)CrossRef Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2937 (2003)CrossRef
22.
Zurück zum Zitat Asheghi, M., Leung, Y.K., Wong, S.S., Goodson, K.E.: Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71, 1798–1801 (1997)CrossRef Asheghi, M., Leung, Y.K., Wong, S.S., Goodson, K.E.: Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71, 1798–1801 (1997)CrossRef
23.
Zurück zum Zitat Mingo, N.: Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 113308 (2003)CrossRef Mingo, N.: Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 113308 (2003)CrossRef
24.
Zurück zum Zitat Sheidemantel, T.J., Ambrosch-Draxl, C., Thomhauser, T., Badding, J.V., Sofo, J.O.: Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210 (2003)CrossRef Sheidemantel, T.J., Ambrosch-Draxl, C., Thomhauser, T., Badding, J.V., Sofo, J.O.: Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210 (2003)CrossRef
25.
Zurück zum Zitat Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, An Augmented Plane Wave1Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001. ISBN 3-9501031-1-2 Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, An Augmented Plane Wave1Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001. ISBN 3-9501031-1-2
26.
Zurück zum Zitat Singh, D.J.: Doping-dependent thermopower of PbTe from Boltzmann transport calculations. Phys. Rev. B 81, 195217 (2010)CrossRef Singh, D.J.: Doping-dependent thermopower of PbTe from Boltzmann transport calculations. Phys. Rev. B 81, 195217 (2010)CrossRef
27.
Zurück zum Zitat Crocker, A.J., Rogers, L.M.: Interpretation of the Hall coefficient, electrical resistivity and Seebeck coefficient of p-type lead telluride. Br. J. Appl. Phys. 18, 563–573 (1967)CrossRef Crocker, A.J., Rogers, L.M.: Interpretation of the Hall coefficient, electrical resistivity and Seebeck coefficient of p-type lead telluride. Br. J. Appl. Phys. 18, 563–573 (1967)CrossRef
28.
Zurück zum Zitat Martin, J., Wang, L., Chen, L., Nolas, G.S.: Enhanced Seebeck coefficient through energy barrier scattering in PbTe nanocomposites. Phys. Rev. B 79, 115311 (2009)CrossRef Martin, J., Wang, L., Chen, L., Nolas, G.S.: Enhanced Seebeck coefficient through energy barrier scattering in PbTe nanocomposites. Phys. Rev. B 79, 115311 (2009)CrossRef
29.
Zurück zum Zitat Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of termoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)CrossRef Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of termoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)CrossRef
30.
Zurück zum Zitat Harman, T.C., Spears, D.L., Manfra, M.J.: High thermoelectric figures of merit in PbTe quantum wells. J. Electron. Math. 25, 1121–1127 (1996)CrossRef Harman, T.C., Spears, D.L., Manfra, M.J.: High thermoelectric figures of merit in PbTe quantum wells. J. Electron. Math. 25, 1121–1127 (1996)CrossRef
31.
Zurück zum Zitat Ward, A., Broido, D.A., Stewart, D.A., Deinzer, G.: Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 80, 125203 (2009)CrossRef Ward, A., Broido, D.A., Stewart, D.A., Deinzer, G.: Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 80, 125203 (2009)CrossRef
32.
Zurück zum Zitat Li, W., Mingo, N., Lindsay, L., Broido, D.A., Stweart, D.A., Katcho, N.A.: Thermal conductivity of diamond nanowires from first principles. Phys. Rev. B 85, 195436 (2012)CrossRef Li, W., Mingo, N., Lindsay, L., Broido, D.A., Stweart, D.A., Katcho, N.A.: Thermal conductivity of diamond nanowires from first principles. Phys. Rev. B 85, 195436 (2012)CrossRef
Metadaten
Titel
Thermoelectric Effects: Semiclassical and Quantum Approaches from the Boltzmann Transport Equation
verfasst von
Andrés Cantarero
F. Xavier Àlvarez
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-02012-9_1