Skip to main content
Top

2016 | OriginalPaper | Chapter

16. Thermal Conductivity of Segmented Nanowires

Authors : Denis L. Nika, Alexandr I. Cocemasov, Alexander A. Balandin

Published in: Nanostructures and Thin Films for Multifunctional Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter we present a review of the phonon thermal conductivity of segmented nanowires focusing on the theoretical results for Si and Si/Ge structures with the constant and periodically modulated cross-sections. We describe the use of the face-centered cubic cell and Born-von Karman models of the lattice vibrations for calculating the phonon energy spectra in the segmented nanowires. Modification of the phonon spectrum in such nanostructures results in strong reduction of the phonon thermal conductivity and suppression of heat transfer due to a trapping of phonon modes in nanowire segments. Possible practical applications of segmented nanowires in thermoelectric energy generation are also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.A. Stroscio, M. Dutta, Phonons in Nanostructures (Cambridge University Press, 2001), p. 1 M.A. Stroscio, M. Dutta, Phonons in Nanostructures (Cambridge University Press, 2001), p. 1
2.
go back to reference A. Balandin, K.L. Wang, Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 84, 6149 (1998)CrossRef A. Balandin, K.L. Wang, Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 84, 6149 (1998)CrossRef
3.
go back to reference A. Balandin, K.L. Wang, Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544 (1998)CrossRef A. Balandin, K.L. Wang, Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544 (1998)CrossRef
4.
go back to reference A.A. Balandin, Phonon engineering in nanostructures and nanodevices. J. Nanosci. Nanotechnol. 5, 1015 (2005)CrossRef A.A. Balandin, Phonon engineering in nanostructures and nanodevices. J. Nanosci. Nanotechnol. 5, 1015 (2005)CrossRef
5.
go back to reference A.A. Balandin, D.L. Nika, E.P. Pokatilov, Phonon engineering in hetero- and nanostructures. J. Nanoelectron. Optoelectron. 2, 140 (2007)CrossRef A.A. Balandin, D.L. Nika, E.P. Pokatilov, Phonon engineering in hetero- and nanostructures. J. Nanoelectron. Optoelectron. 2, 140 (2007)CrossRef
6.
go back to reference J. Zou, A. Balandin, Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 89, 2932 (2001)CrossRef J. Zou, A. Balandin, Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 89, 2932 (2001)CrossRef
7.
go back to reference N. Mingo, Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 113308 (2003)CrossRef N. Mingo, Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 113308 (2003)CrossRef
8.
go back to reference A.A. Balandin, D.L. Nika, Phononics in low-dimensional materials. Mater. Today 15, 266 (2012)CrossRef A.A. Balandin, D.L. Nika, Phononics in low-dimensional materials. Mater. Today 15, 266 (2012)CrossRef
9.
go back to reference A. Khitun, A. Balandin, K.L. Wang, Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons. Superlattices Microstruct. 26, 181 (1999)CrossRef A. Khitun, A. Balandin, K.L. Wang, Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons. Superlattices Microstruct. 26, 181 (1999)CrossRef
10.
go back to reference D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186 (2003)CrossRef D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186 (2003)CrossRef
11.
go back to reference W. Liu, M. Asheghi, Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat Transf. 128, 75 (2006)CrossRef W. Liu, M. Asheghi, Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat Transf. 128, 75 (2006)CrossRef
12.
go back to reference A.I. Cocemasov, D.L. Nika, Phonons and Phonon Thermal Conductivity in Silicon Nanolayers. J. Nanoelectron. Optoelectron. 7, 370 (2012)CrossRef A.I. Cocemasov, D.L. Nika, Phonons and Phonon Thermal Conductivity in Silicon Nanolayers. J. Nanoelectron. Optoelectron. 7, 370 (2012)CrossRef
13.
go back to reference D.G. Kahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.P. Phillport, Nanoscale thermal transport. J. Appl. Phys. 93, 793 (2003)CrossRef D.G. Kahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.P. Phillport, Nanoscale thermal transport. J. Appl. Phys. 93, 793 (2003)CrossRef
15.
go back to reference A.A. Balandin, Thermal properties of graphene and nanostructured carbon carbon materials. Nat. Mater. 10, 569 (2011)CrossRef A.A. Balandin, Thermal properties of graphene and nanostructured carbon carbon materials. Nat. Mater. 10, 569 (2011)CrossRef
16.
go back to reference A. Khitun, A. Balandin, J.L. Liu, K.L. Wang, In-plane lattice thermal conductivity of a quantum-dot superlattice. J. Appl. Phys. 88, 696 (2000)CrossRef A. Khitun, A. Balandin, J.L. Liu, K.L. Wang, In-plane lattice thermal conductivity of a quantum-dot superlattice. J. Appl. Phys. 88, 696 (2000)CrossRef
17.
go back to reference O.L. Lazarenkova, A. Balandin, Miniband formation in a quantum dot crystal. J. Appl. Phys. 89, 5509 (2001)CrossRef O.L. Lazarenkova, A. Balandin, Miniband formation in a quantum dot crystal. J. Appl. Phys. 89, 5509 (2001)CrossRef
18.
go back to reference D.L. Nika, E.P. Pokatilov, Q. Shao, A.A. Balandin, Charge carrier states and light absorption in the ordered quantum dot superlattices. Phys. Rev. B 76, 125417 (2007)CrossRef D.L. Nika, E.P. Pokatilov, Q. Shao, A.A. Balandin, Charge carrier states and light absorption in the ordered quantum dot superlattices. Phys. Rev. B 76, 125417 (2007)CrossRef
19.
go back to reference L. Weber, E. Gmelin, Transport properties of silicon. Appl. Phys. A 53, 136 (1991)CrossRef L. Weber, E. Gmelin, Transport properties of silicon. Appl. Phys. A 53, 136 (1991)CrossRef
20.
go back to reference A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2007)CrossRef A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2007)CrossRef
21.
go back to reference A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008)CrossRef A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008)CrossRef
22.
go back to reference P.N. Martin, Z. Aksamija, E. Pop, U. Ravaioli, Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. Nano Lett. 10, 1120 (2010)CrossRef P.N. Martin, Z. Aksamija, E. Pop, U. Ravaioli, Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. Nano Lett. 10, 1120 (2010)CrossRef
23.
go back to reference M. Shelley, A.A. Mostofi, Prediction of high zT in thermoelectric silicon nanowires with axial germanium heterostructures. EPL 94, 67001 (2011)CrossRef M. Shelley, A.A. Mostofi, Prediction of high zT in thermoelectric silicon nanowires with axial germanium heterostructures. EPL 94, 67001 (2011)CrossRef
24.
go back to reference M Hu, K.P. Giapis, J.V. Goicochea, X. Zhang, and Dimos Poulikakos, Nano Lett. 11, 618 (2011) M Hu, K.P. Giapis, J.V. Goicochea, X. Zhang, and Dimos Poulikakos, Nano Lett. 11, 618 (2011)
25.
go back to reference D.V. Crismari, D.L. Nika, Thermal conductivity reduction in Si/Ge core/shell nanowires. J. Nanoelectron. Optoelectron. 7, 701 (2012)CrossRef D.V. Crismari, D.L. Nika, Thermal conductivity reduction in Si/Ge core/shell nanowires. J. Nanoelectron. Optoelectron. 7, 701 (2012)CrossRef
26.
go back to reference X. Chen, Y. Wang, Y. Ma, High thermoelectric performance of Ge/Si core − shell nanowires: first-principles prediction. J. Phys. Chem. C 114, 9096 (2010)CrossRef X. Chen, Y. Wang, Y. Ma, High thermoelectric performance of Ge/Si core − shell nanowires: first-principles prediction. J. Phys. Chem. C 114, 9096 (2010)CrossRef
27.
go back to reference D.L. Nika, E.P. Pokatilov, A.A. Balandin, V.M. Fomin, A. Rastelli, O.G. Schmidt, Reduction of the lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering. Phys. Rev. B 84, 165415 (2011)CrossRef D.L. Nika, E.P. Pokatilov, A.A. Balandin, V.M. Fomin, A. Rastelli, O.G. Schmidt, Reduction of the lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering. Phys. Rev. B 84, 165415 (2011)CrossRef
28.
go back to reference D.L. Nika, A.I. Cocemasov, C.I. Isacova, A.A. Balandin, V.M. Fomin, O.G. Schmidt, Suppression of phonon heat conduction in cross-section modulated nanowires. Phys. Rev. B 85, 205439 (2012)CrossRef D.L. Nika, A.I. Cocemasov, C.I. Isacova, A.A. Balandin, V.M. Fomin, O.G. Schmidt, Suppression of phonon heat conduction in cross-section modulated nanowires. Phys. Rev. B 85, 205439 (2012)CrossRef
29.
go back to reference D.L. Nika, A.I. Cocemasov, D.V. Crismari, A.A. Balandin, “Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires. Appl. Phys. Lett. 102, 213109 (2013)CrossRef D.L. Nika, A.I. Cocemasov, D.V. Crismari, A.A. Balandin, “Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires. Appl. Phys. Lett. 102, 213109 (2013)CrossRef
30.
go back to reference X. Zianni, Diameter-modulated nanowires as candidates for high thermoelectric energy conversion efficiency. Appl. Phys. Lett. 97, 233106 (2010)CrossRef X. Zianni, Diameter-modulated nanowires as candidates for high thermoelectric energy conversion efficiency. Appl. Phys. Lett. 97, 233106 (2010)CrossRef
31.
go back to reference X. Zianni, Efficient thermoelectric energy conversion on quasi-localized electron states in diameter modulated nanowires. Nanoscale Res. Lett. 6, 286 (2011)CrossRef X. Zianni, Efficient thermoelectric energy conversion on quasi-localized electron states in diameter modulated nanowires. Nanoscale Res. Lett. 6, 286 (2011)CrossRef
32.
go back to reference G.D. Sulka, A. Brzozka, L. Liu, Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates. Electrochim. Acta 56, 4972 (2011)CrossRef G.D. Sulka, A. Brzozka, L. Liu, Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates. Electrochim. Acta 56, 4972 (2011)CrossRef
33.
go back to reference P. Caroff, K.A. Dick, J. Johansson, M.E. Messing, K. Deppert, L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotechnol. 4, 50 (2009)CrossRef P. Caroff, K.A. Dick, J. Johansson, M.E. Messing, K. Deppert, L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotechnol. 4, 50 (2009)CrossRef
34.
go back to reference L.-T. Fu, Z.-G. Chen, J. Zou, H.-T. Cong, G.-Q. Lu, Fabrication and visible emission of single-crystal diameter-modulated gallium phosphide nanochains. J. Appl. Phys. 107, 124321 (2010)CrossRef L.-T. Fu, Z.-G. Chen, J. Zou, H.-T. Cong, G.-Q. Lu, Fabrication and visible emission of single-crystal diameter-modulated gallium phosphide nanochains. J. Appl. Phys. 107, 124321 (2010)CrossRef
35.
go back to reference D.S. Oliveira, J.H.G. Tizei, D. Ugarte, M.A. Cotta, Spontaneous periodic diameter oscillations in inp nanowires: the role of interface instabilities. Nano Lett. 13, 9 (2013)CrossRef D.S. Oliveira, J.H.G. Tizei, D. Ugarte, M.A. Cotta, Spontaneous periodic diameter oscillations in inp nanowires: the role of interface instabilities. Nano Lett. 13, 9 (2013)CrossRef
36.
go back to reference S.K. Lim, S. Crawford, G. Haberfehlner, S. Gradecak, Controlled modulation of diameter and composition along individual III–V nitride nanowires. Nano Lett. 13, 331 (2013)CrossRef S.K. Lim, S. Crawford, G. Haberfehlner, S. Gradecak, Controlled modulation of diameter and composition along individual III–V nitride nanowires. Nano Lett. 13, 331 (2013)CrossRef
37.
go back to reference D.L. Nika, N.D. Zincenco, E.P. Pokatilov, Lattice thermal conductivity of ultra-thin freestanding layers: face-centered cubic cell model versus continuum approach. J. Nanoelectron. Optoelectron. 4, 170 (2009)CrossRef D.L. Nika, N.D. Zincenco, E.P. Pokatilov, Lattice thermal conductivity of ultra-thin freestanding layers: face-centered cubic cell model versus continuum approach. J. Nanoelectron. Optoelectron. 4, 170 (2009)CrossRef
38.
go back to reference D.L. Nika, N.D. Zincenco, E.P. Pokatilov, Engineering of thermal fluxes in phonon mismatched heterostructures. J. Nanoelectron. Optoelectron. 4, 180 (2009)CrossRef D.L. Nika, N.D. Zincenco, E.P. Pokatilov, Engineering of thermal fluxes in phonon mismatched heterostructures. J. Nanoelectron. Optoelectron. 4, 180 (2009)CrossRef
39.
go back to reference D.L. Nika, E.P. Pokatilov, A.A. Balandin, Phonon—engineered mobility enhancement in the acoustically mismatched silicon/diamond transistor channels. Appl. Phys. Lett. 93, 173111 (2008)CrossRef D.L. Nika, E.P. Pokatilov, A.A. Balandin, Phonon—engineered mobility enhancement in the acoustically mismatched silicon/diamond transistor channels. Appl. Phys. Lett. 93, 173111 (2008)CrossRef
40.
go back to reference E.P. Pokatilov, D.L. Nika, A.A. Balandin, Acoustic phonon engineering in coated cylindrical nanowires. Superlettices Microstruct. 38, 168 (2005)CrossRef E.P. Pokatilov, D.L. Nika, A.A. Balandin, Acoustic phonon engineering in coated cylindrical nanowires. Superlettices Microstruct. 38, 168 (2005)CrossRef
41.
go back to reference E.P. Pokatilov, D.L. Nika, A.A. Balandin, Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures. Superlattices Microstruct. 33, 155 (2003)CrossRef E.P. Pokatilov, D.L. Nika, A.A. Balandin, Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures. Superlattices Microstruct. 33, 155 (2003)CrossRef
42.
go back to reference P.N. Keating, Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. B 145, 637 (1966)CrossRef P.N. Keating, Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. B 145, 637 (1966)CrossRef
43.
go back to reference M. Born, K. Huang, Dynamic Theory of Crystal Lattices (Oxford University Press, Oxford, 1954) M. Born, K. Huang, Dynamic Theory of Crystal Lattices (Oxford University Press, Oxford, 1954)
44.
go back to reference G. Leibfried, W. Ludwig, in Theory of Anharmonic Effects in Crystals, ed. by F. Seitz, D. Turnbull. Solid State Physics, vol. 12 (Academic, New York, 1961) G. Leibfried, W. Ludwig, in Theory of Anharmonic Effects in Crystals, ed. by F. Seitz, D. Turnbull. Solid State Physics, vol. 12 (Academic, New York, 1961)
45.
go back to reference P. Giannozzi, S. de Gironcoli, P. Pavone, S. Baroni, Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231 (1991)CrossRef P. Giannozzi, S. de Gironcoli, P. Pavone, S. Baroni, Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231 (1991)CrossRef
46.
go back to reference G. Nilsson, G. Nelin, Phonon dispersion relations in ge at 80 k. Phys. Rev. B 3, 364 (1971)CrossRef G. Nilsson, G. Nelin, Phonon dispersion relations in ge at 80 k. Phys. Rev. B 3, 364 (1971)CrossRef
47.
go back to reference E.P. Pokatilov, D.L. Nika, A.A. Balandin, Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers. Phys. Rev. B 72, 113311 (2005)CrossRef E.P. Pokatilov, D.L. Nika, A.A. Balandin, Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers. Phys. Rev. B 72, 113311 (2005)CrossRef
48.
go back to reference S. Volz, G. Chen, Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl. Phys. Lett. 75, 2056 (1999)CrossRef S. Volz, G. Chen, Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl. Phys. Lett. 75, 2056 (1999)CrossRef
49.
go back to reference D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009)CrossRef D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009)CrossRef
50.
go back to reference D. Donadio, G. Galli, Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys. Rev. Lett. 99, 255502 (2009)CrossRef D. Donadio, G. Galli, Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys. Rev. Lett. 99, 255502 (2009)CrossRef
51.
go back to reference N. Mingo, L. Yang, Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach. Phys. Rev. B 68, 245406 (2003)CrossRef N. Mingo, L. Yang, Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach. Phys. Rev. B 68, 245406 (2003)CrossRef
52.
go back to reference B. Qiu, X. Ruan, Molecular dynamics simulation of lattice thermal conductivity of bismuth telluride using two-body interatomic potentials. Phys. Rev. B 80, 165203 (2009)CrossRef B. Qiu, X. Ruan, Molecular dynamics simulation of lattice thermal conductivity of bismuth telluride using two-body interatomic potentials. Phys. Rev. B 80, 165203 (2009)CrossRef
53.
go back to reference A. Ladd, B. Moran, W. Hoover, Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics. Phys. Rev. B 34, 5058 (1986)CrossRef A. Ladd, B. Moran, W. Hoover, Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics. Phys. Rev. B 34, 5058 (1986)CrossRef
54.
go back to reference A. Ward, D. Broido, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010)CrossRef A. Ward, D. Broido, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010)CrossRef
55.
go back to reference E. Pokatilov, D. Nika, A. Balandin, A phonon depletion effect in ultrathin heterostructures with acoustically mismatched layers. Appl. Phys. Lett. 85, 825 (2004)CrossRef E. Pokatilov, D. Nika, A. Balandin, A phonon depletion effect in ultrathin heterostructures with acoustically mismatched layers. Appl. Phys. Lett. 85, 825 (2004)CrossRef
56.
go back to reference M.C. Wingert, Z.C.Y. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, R. Chen, Thermal conductivity of Ge and Ge–Si core-shell nanowires in the phonon confinement regime. Nano Lett. 11, 5507 (2011)CrossRef M.C. Wingert, Z.C.Y. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, R. Chen, Thermal conductivity of Ge and Ge–Si core-shell nanowires in the phonon confinement regime. Nano Lett. 11, 5507 (2011)CrossRef
57.
go back to reference C. Glassbrenner, G. Slack, Thermal conductivity of silicon and germanium from 3°k to the melting point. Phys. Rev. 134, A1058 (1964)CrossRef C. Glassbrenner, G. Slack, Thermal conductivity of silicon and germanium from 3°k to the melting point. Phys. Rev. 134, A1058 (1964)CrossRef
58.
go back to reference J. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, New York, 1960) J. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, New York, 1960)
59.
go back to reference A. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008)CrossRef A. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008)CrossRef
60.
go back to reference M. Hu, K.P. Giapis, J.V. Goicochea, X. Zhang, D. Poulikakos, Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. Nano Lett. 11, 618 (2011)CrossRef M. Hu, K.P. Giapis, J.V. Goicochea, X. Zhang, D. Poulikakos, Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. Nano Lett. 11, 618 (2011)CrossRef
61.
go back to reference E.P. Pokatilov, D.L. Nika, A.S. Askerov, N.D. Zincenco, A.A. Balandin, The size-quantized oscillations of the optical-phonon-limited electron mobility in AlN/GaN/AlN nanoscale heterostructures. J. Phys. Conf. Ser. 92, 012022 (2007)CrossRef E.P. Pokatilov, D.L. Nika, A.S. Askerov, N.D. Zincenco, A.A. Balandin, The size-quantized oscillations of the optical-phonon-limited electron mobility in AlN/GaN/AlN nanoscale heterostructures. J. Phys. Conf. Ser. 92, 012022 (2007)CrossRef
62.
go back to reference K. Bi, J. Wang, Y. Wang, J. Sha, Z. Wang, The thermal conductivity of SiGe heterostructure nanowires with different cores and shells. Phys. Lett. A 376, 2668 (2012)CrossRef K. Bi, J. Wang, Y. Wang, J. Sha, Z. Wang, The thermal conductivity of SiGe heterostructure nanowires with different cores and shells. Phys. Lett. A 376, 2668 (2012)CrossRef
63.
go back to reference M. Wingert, Z.C.Y. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, R. Chen, Thermal conductivity of Ge and Ge-Si core-shell nanowires in the phonon confinement regime. Nano Lett. 11, 5507 (2011)CrossRef M. Wingert, Z.C.Y. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, R. Chen, Thermal conductivity of Ge and Ge-Si core-shell nanowires in the phonon confinement regime. Nano Lett. 11, 5507 (2011)CrossRef
64.
go back to reference Z. Aksamija, I. Knezevic, Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B 82, 045319 (2010)CrossRef Z. Aksamija, I. Knezevic, Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B 82, 045319 (2010)CrossRef
65.
go back to reference Z. Aksamija, I. Knezevic, Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering. Appl. Phys. Lett. 98, 141919 (2011)CrossRef Z. Aksamija, I. Knezevic, Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering. Appl. Phys. Lett. 98, 141919 (2011)CrossRef
66.
go back to reference E. Ramayya, D. Vasileska, S.M. Goodnick, I. Knezevic, Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008)CrossRef E. Ramayya, D. Vasileska, S.M. Goodnick, I. Knezevic, Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008)CrossRef
67.
go back to reference S. Jin, M. Fischetti, T.-W. Tang, Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening, and band nonparabolicity. J. Appl. Phys. 102, 083715 (2007)CrossRef S. Jin, M. Fischetti, T.-W. Tang, Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening, and band nonparabolicity. J. Appl. Phys. 102, 083715 (2007)CrossRef
68.
go back to reference N. Yang, G. Zhang, B. Li, Ultralow thermal conductivity of isotope-doped silicon nanowires. Nano Lett. 8, 276 (2008)CrossRef N. Yang, G. Zhang, B. Li, Ultralow thermal conductivity of isotope-doped silicon nanowires. Nano Lett. 8, 276 (2008)CrossRef
69.
go back to reference C. Dames, G. Chen, Theoretical phonon thermal conductivity of Si-Ge superlattice nanowires. J. Appl. Phys. 95, 682 (2004)CrossRef C. Dames, G. Chen, Theoretical phonon thermal conductivity of Si-Ge superlattice nanowires. J. Appl. Phys. 95, 682 (2004)CrossRef
70.
go back to reference G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Monch, C. Deneke, O.G. Schmidt, J.M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, N. Mingo, Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat. Mater. 9, 491 (2010)CrossRef G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Monch, C. Deneke, O.G. Schmidt, J.M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, N. Mingo, Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat. Mater. 9, 491 (2010)CrossRef
71.
go back to reference J.-N. Gillet, Y. Chalopin, S. Volz, Atomic-scale three-dimensional phononic crystals with a very low thermal conductivity to design crystalline thermoelectric devices. J. Heat Transf. 131, 043206 (2009)CrossRef J.-N. Gillet, Y. Chalopin, S. Volz, Atomic-scale three-dimensional phononic crystals with a very low thermal conductivity to design crystalline thermoelectric devices. J. Heat Transf. 131, 043206 (2009)CrossRef
Metadata
Title
Thermal Conductivity of Segmented Nanowires
Authors
Denis L. Nika
Alexandr I. Cocemasov
Alexander A. Balandin
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-30198-3_16

Premium Partners