Skip to main content
Top
Published in: Journal of Computational Electronics 1/2017

28-11-2016

Thermal conductivity reduction by embedding nanoparticles

Author: Giovanni Mascali

Published in: Journal of Computational Electronics | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reduction of thermal conductivity is important to enhance the performance of thermoelectric materials. One possible way to achieve this goal consists in embedding nanoparticles in the material, since they act as extrinsic phonon-scattering centers. In this paper, we study the effects of this embedding by means of a new formula for thermal conductivity obtained on the base of a hierarchy of hydrodynamical models which describe the transport of acoustic phonons in semiconductors. These models use as state variables suitable moments of the phonon occupation number, evolution equations of which are found starting from the Boltzmann–Peierls transport equation, and are closed by means of the maximum entropy principle. All the main interactions of phonons among themselves, with isotopes, nanoparticles, and boundaries are taken into account. Numerical results relative to the case of germanium nanoparticles embedded in a Si\(_{0.7}\)Ge\(_{0.3}\) alloy crystal show that the thermal conductivity can be significantly reduced even at room temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Due to accuracy problems in the numerical inversion, we cannot present results with a greater number of moments.
 
Literature
1.
go back to reference Ezzahri, Y., Joulain, K.: Dynamical thermal conductivity of bulk semiconductor crystals. J. Appl. Phys. 112(8), 083515 (2012)CrossRef Ezzahri, Y., Joulain, K.: Dynamical thermal conductivity of bulk semiconductor crystals. J. Appl. Phys. 112(8), 083515 (2012)CrossRef
2.
go back to reference Ezzahri, Y., Joulain, K.: Effect of embedding nanoparticles on the lattice thermal conductivity of bulk semiconductor crystals. J. Appl. Phys. 113(8), 043510 (2013)CrossRef Ezzahri, Y., Joulain, K.: Effect of embedding nanoparticles on the lattice thermal conductivity of bulk semiconductor crystals. J. Appl. Phys. 113(8), 043510 (2013)CrossRef
4.
go back to reference Mingo, N., Hauser, D., Kobayashi, N.P., Plissonnier, M., Shakouri, A.: Nanoparticle-in-alloy approach to efficient thermoelectrics: silicides in SiGe. Nano. Lett. 9(2), 711–715 (2009)CrossRef Mingo, N., Hauser, D., Kobayashi, N.P., Plissonnier, M., Shakouri, A.: Nanoparticle-in-alloy approach to efficient thermoelectrics: silicides in SiGe. Nano. Lett. 9(2), 711–715 (2009)CrossRef
5.
go back to reference Morelli, D.T., Heremans, J.P., Slack, G.A.: Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III–IV semiconductors. Phys. Rev. B 66, 094115 (2002)CrossRef Morelli, D.T., Heremans, J.P., Slack, G.A.: Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III–IV semiconductors. Phys. Rev. B 66, 094115 (2002)CrossRef
6.
go back to reference Nika, D.L., Pokatilov, E.P., Askerov, A.S., Balandin, A.A.: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009)CrossRef Nika, D.L., Pokatilov, E.P., Askerov, A.S., Balandin, A.A.: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009)CrossRef
7.
go back to reference Volz, S.G.: Thermal insulating behavior in crystals at high frequencies. Phys. Rev. Lett. 87(7), 074301 (2001)CrossRef Volz, S.G.: Thermal insulating behavior in crystals at high frequencies. Phys. Rev. Lett. 87(7), 074301 (2001)CrossRef
8.
go back to reference Kundu, A., Mingo, N., Broido, D.A., Stewart, D.A.: Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84, 125426 (2011)CrossRef Kundu, A., Mingo, N., Broido, D.A., Stewart, D.A.: Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84, 125426 (2011)CrossRef
9.
go back to reference Mascali, G.: A new formula for thermal conductivity based on a hierarchy of hydrodynamical models. J. Stat. Phys. 163, 1268–1284 (2016)MathSciNetCrossRefMATH Mascali, G.: A new formula for thermal conductivity based on a hierarchy of hydrodynamical models. J. Stat. Phys. 163, 1268–1284 (2016)MathSciNetCrossRefMATH
10.
go back to reference Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113(4), 1046–1051 (1959)CrossRefMATH Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113(4), 1046–1051 (1959)CrossRefMATH
11.
go back to reference Mascali, G.: Maximum entropy principle in relativistic radiation hydrodynamics II: Compton and double Compton scattering. Contin. Mech. Thermodyn. 14(6), 549–561 (2002) Mascali, G.: Maximum entropy principle in relativistic radiation hydrodynamics II: Compton and double Compton scattering. Contin. Mech. Thermodyn. 14(6), 549–561 (2002)
12.
go back to reference Reinecke, S., Kremer, G.M.: Method of moments of Grad. Phys. Rev. A 42(2), 815 (1990)CrossRef Reinecke, S., Kremer, G.M.: Method of moments of Grad. Phys. Rev. A 42(2), 815 (1990)CrossRef
13.
14.
go back to reference Alì, G., Mascali, G., Romano, V., Torcasio, R.C.: A hydrodynamical model for covalent semiconductors, with applications to GaN and SiC. Acta Appl. Math. 122(1), 335–348 (2012)MATH Alì, G., Mascali, G., Romano, V., Torcasio, R.C.: A hydrodynamical model for covalent semiconductors, with applications to GaN and SiC. Acta Appl. Math. 122(1), 335–348 (2012)MATH
15.
go back to reference Camiola, V.D., Mascali, G., Romano, V.: Numerical simulation of a double-gate MOSFET with a subband model for semiconductors based on the maximum entropy principle. Contin. Mech. Thermodyn. 24(4–6), 417–436 (2012)MathSciNetCrossRefMATH Camiola, V.D., Mascali, G., Romano, V.: Numerical simulation of a double-gate MOSFET with a subband model for semiconductors based on the maximum entropy principle. Contin. Mech. Thermodyn. 24(4–6), 417–436 (2012)MathSciNetCrossRefMATH
16.
go back to reference Mascali, G., Romano, V.: A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle. Math. Comput. Model. 55(3–4), 1003–1020 (2012)MathSciNetCrossRefMATH Mascali, G., Romano, V.: A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle. Math. Comput. Model. 55(3–4), 1003–1020 (2012)MathSciNetCrossRefMATH
17.
go back to reference Morandi, O., Barletti, L.: Particle dynamics in graphene: collimated beam limit. J. Comput. Theor. Transp. 43(1–7), 418–432 (2015)MathSciNet Morandi, O., Barletti, L.: Particle dynamics in graphene: collimated beam limit. J. Comput. Theor. Transp. 43(1–7), 418–432 (2015)MathSciNet
18.
go back to reference Muscato, O., Di Stefano, V.: An energy transport model describing heat generation and conduction in silicon semiconductors. J. Stat. Phys. 144(1), 171–197 (2011)MathSciNetCrossRefMATH Muscato, O., Di Stefano, V.: An energy transport model describing heat generation and conduction in silicon semiconductors. J. Stat. Phys. 144(1), 171–197 (2011)MathSciNetCrossRefMATH
19.
go back to reference Muscato, O., Di Stefano, V.: Hydrodynamic modeling of the electro-thermal transport in silicon semiconductors. J. Phys. A 44, 105501 (2011)MathSciNetCrossRefMATH Muscato, O., Di Stefano, V.: Hydrodynamic modeling of the electro-thermal transport in silicon semiconductors. J. Phys. A 44, 105501 (2011)MathSciNetCrossRefMATH
20.
Metadata
Title
Thermal conductivity reduction by embedding nanoparticles
Author
Giovanni Mascali
Publication date
28-11-2016
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2017
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0934-y

Other articles of this Issue 1/2017

Journal of Computational Electronics 1/2017 Go to the issue