Skip to main content
Top

2019 | OriginalPaper | Chapter

15. Thermal Vibration of Carbon Nanostructures

Authors : Lifeng Wang, Haiyan Hu, Rumeng Liu

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter presents the study on thermal vibration of nanostructures, such as carbon nanotube (CNT) and graphene, as well as the basic finding for the relation between the temperature and the root-of-mean-square (RMS) amplitude of the thermal vibration of the carbon nanostructures. In this study, the molecular dynamics (MD) based on modified Langevin dynamics, which accounts for quantum statistics by introducing a quantum heat bath, is used to simulate the thermal vibration of carbon nanostructures. The simulations show that the RMS amplitude of the thermal vibration of the carbon nanostructures obtained from the semi-quantum MD is lower than that obtained from the classical MD, especially for very low temperature and high-order vibration modes. The RMS amplitudes of the thermal vibrations of the single-walled CNT (SWCNT) and graphene obtained from the semi-quantum MD coincide well with those from the models of Timoshenko beam and Kirchhoff plate with quantum effects. These results indicate that quantum effects are important for the thermal vibration of the SWCNT and graphene in the case of high-order vibration modes, small size, and low temperature. Furthermore, the thermal vibration of a simply supported SWCNT subject to thermal stress is investigated by using the models of planar and non-planar nonlinear beams, respectively. The whirling motion with energy transfer between flexural motions is found in the SWCNT when the geometric nonlinearity is significant. The energies of different vibration modes are not equal even over a time scale of tens of nanoseconds, which is much larger than the period of fundamental natural vibration of the SWCNT at equilibrium state. The energies of different modes become equal when the time scale increases to the range of microseconds.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Astumian RD. Thermodynamics and kinetics of a Brownian motor. Science. 1997;276:917.CrossRef Astumian RD. Thermodynamics and kinetics of a Brownian motor. Science. 1997;276:917.CrossRef
2.
go back to reference Poncharal P, Wang ZL, Ugarte D, de Heer WA. Electrostatic deflections and electromechanical resonances of CNTs. Science. 1999;283:1513–6.CrossRef Poncharal P, Wang ZL, Ugarte D, de Heer WA. Electrostatic deflections and electromechanical resonances of CNTs. Science. 1999;283:1513–6.CrossRef
3.
go back to reference Garcia-Sanchez D, San Paulo A, Esplandiu M, Perez-Murano F, Forró L, Aguasca A, Bachtold A. Mechanical detection of CNT resonator vibrations. Phys Rev Lett. 2007;99:085501. Garcia-Sanchez D, San Paulo A, Esplandiu M, Perez-Murano F, Forró L, Aguasca A, Bachtold A. Mechanical detection of CNT resonator vibrations. Phys Rev Lett. 2007;99:085501.
4.
5.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.CrossRef
6.
go back to reference Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS. Mechanics of CNTs. Appl Mech Rev. 2002;55:495–533.CrossRef Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS. Mechanics of CNTs. Appl Mech Rev. 2002;55:495–533.CrossRef
7.
go back to reference Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual. Nature. 1996;381:678–80.CrossRef Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual. Nature. 1996;381:678–80.CrossRef
8.
go back to reference Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young’s modulus of single-walled nanotubes. Phys Rev B. 1998;58(20):14013.CrossRef Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young’s modulus of single-walled nanotubes. Phys Rev B. 1998;58(20):14013.CrossRef
9.
go back to reference Barnard AW, Sazonova V, van der Zande AM, McEuen PK. Fluctuation broadening in CNT resonators. Proc Natl Acad Sci U S A. 2012;109(47):19093–6.CrossRef Barnard AW, Sazonova V, van der Zande AM, McEuen PK. Fluctuation broadening in CNT resonators. Proc Natl Acad Sci U S A. 2012;109(47):19093–6.CrossRef
10.
go back to reference Wang LF, HY H, Guo WL. Thermal vibration of CNTs predicted by beam models and molecular dynamics. Proc Roy Soc A. 2010;466(2120):2325–40.CrossRef Wang LF, HY H, Guo WL. Thermal vibration of CNTs predicted by beam models and molecular dynamics. Proc Roy Soc A. 2010;466(2120):2325–40.CrossRef
11.
go back to reference Feng EH, Jones RE. Equilibrium thermal vibrations of CNTs. Phys Rev B. 2010;81:125436.CrossRef Feng EH, Jones RE. Equilibrium thermal vibrations of CNTs. Phys Rev B. 2010;81:125436.CrossRef
12.
go back to reference Feng EH, Jones RE. CNT cantilevers for next-generation sensors. Phys Rev B. 2011;83:125412.CrossRef Feng EH, Jones RE. CNT cantilevers for next-generation sensors. Phys Rev B. 2011;83:125412.CrossRef
13.
go back to reference Wang LF, Hu HY. Thermal vibration of double-walled carbon nanotubes predicted via double-Euler-beam model and molecular dynamics. Acta Mech. 2012;223(10):2107–15.MathSciNetCrossRef Wang LF, Hu HY. Thermal vibration of double-walled carbon nanotubes predicted via double-Euler-beam model and molecular dynamics. Acta Mech. 2012;223(10):2107–15.MathSciNetCrossRef
14.
go back to reference Moser J, Eichler A, Güttinger J, Dykman MI, Bachtold A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat Nanotechnol. 2014;9:1007.CrossRef Moser J, Eichler A, Güttinger J, Dykman MI, Bachtold A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat Nanotechnol. 2014;9:1007.CrossRef
15.
go back to reference Thomson WT. Theory of vibration with applications. Englewood Cliffs: Prentice-Hall; 1972. Thomson WT. Theory of vibration with applications. Englewood Cliffs: Prentice-Hall; 1972.
16.
go back to reference Yoon J, CQ R, Mioduchowski A. Terahertz vibration of short CNTs modeled as Timoshenko beams. J Appl Mech. 2005;72(1):10–7.CrossRef Yoon J, CQ R, Mioduchowski A. Terahertz vibration of short CNTs modeled as Timoshenko beams. J Appl Mech. 2005;72(1):10–7.CrossRef
17.
go back to reference Wang LF, Flexural HHY. Wave propagation in single-walled carbon nanotubes. Phys Rev B. 2005;71(19):195412.CrossRef Wang LF, Flexural HHY. Wave propagation in single-walled carbon nanotubes. Phys Rev B. 2005;71(19):195412.CrossRef
18.
go back to reference Huang TC. The effect of rotatory inertia and of shear deformation on frequency and normal mode equations of uniform beams with simple end conditions. J Appl Mech. 1961;28:579–84.MathSciNetCrossRef Huang TC. The effect of rotatory inertia and of shear deformation on frequency and normal mode equations of uniform beams with simple end conditions. J Appl Mech. 1961;28:579–84.MathSciNetCrossRef
19.
go back to reference Liew KM, YG H, He XQ. Flexural wave propagation in single-walled carbon nanotubes. J Comput Theor Nanosci. 2008;5:581.CrossRef Liew KM, YG H, He XQ. Flexural wave propagation in single-walled carbon nanotubes. J Comput Theor Nanosci. 2008;5:581.CrossRef
20.
go back to reference Hone J, Batlogg B, Benes Z, Johnson AT, Fisher JE. Quantized phonon spectrum of single-walled CNTs. Science. 2000;289:1730–3.CrossRef Hone J, Batlogg B, Benes Z, Johnson AT, Fisher JE. Quantized phonon spectrum of single-walled CNTs. Science. 2000;289:1730–3.CrossRef
21.
go back to reference O’Connell AD, Hofheinz M, Ansmann M, Bialczak RC, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis JM, Cleland AN. Quantum ground state and single-phonon control of a mechanical resonator. Nature. 2010;464:697–703.CrossRef O’Connell AD, Hofheinz M, Ansmann M, Bialczak RC, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis JM, Cleland AN. Quantum ground state and single-phonon control of a mechanical resonator. Nature. 2010;464:697–703.CrossRef
22.
go back to reference Parrinello M, Car R. Unified approach for molecular dynamics and density - functional theory. Phys Rev Lett. 1985;55:2471–4.CrossRef Parrinello M, Car R. Unified approach for molecular dynamics and density - functional theory. Phys Rev Lett. 1985;55:2471–4.CrossRef
23.
go back to reference Miller WH. Quantum dynamics of complex molecular systems. Proc Natl Acad Sci U S A. 2005;102:6660–4.CrossRef Miller WH. Quantum dynamics of complex molecular systems. Proc Natl Acad Sci U S A. 2005;102:6660–4.CrossRef
24.
go back to reference Wang JS. Quantum thermal transport from classical molecular dynamics. Phys Rev Lett. 2007;99:160601.CrossRef Wang JS. Quantum thermal transport from classical molecular dynamics. Phys Rev Lett. 2007;99:160601.CrossRef
25.
go back to reference Dammak H, Chalopin Y, Laroche M, Hayoun M, Greffet JJ. Quantum thermal bath for molecular dynamics simulation. Phys Rev Lett. 2009;103:190601.CrossRef Dammak H, Chalopin Y, Laroche M, Hayoun M, Greffet JJ. Quantum thermal bath for molecular dynamics simulation. Phys Rev Lett. 2009;103:190601.CrossRef
26.
go back to reference Savin AV, Kosevich YA, Cantarero A. Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures. Phys Rev B. 2012;86:064305.CrossRef Savin AV, Kosevich YA, Cantarero A. Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures. Phys Rev B. 2012;86:064305.CrossRef
27.
go back to reference Wang LF, Hu HY. Thermal vibration of single-walled CNTs with quantum effects. Proc Roy Soc A. 2014;470:20140087.CrossRef Wang LF, Hu HY. Thermal vibration of single-walled CNTs with quantum effects. Proc Roy Soc A. 2014;470:20140087.CrossRef
28.
go back to reference Liu RM, Wang LF. Thermal vibration of a single-walled CNT predicted by semiquantum molecular dynamics. Phys Chem Chem Phys. 2015;17:5194–201.CrossRef Liu RM, Wang LF. Thermal vibration of a single-walled CNT predicted by semiquantum molecular dynamics. Phys Chem Chem Phys. 2015;17:5194–201.CrossRef
29.
go back to reference Lahiri A. Statistical mechanics: an elementary outline. India: Universities Press Private Ltd; 2009. Lahiri A. Statistical mechanics: an elementary outline. India: Universities Press Private Ltd; 2009.
30.
go back to reference Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter. 2002;14:783–802.CrossRef Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter. 2002;14:783–802.CrossRef
31.
go back to reference Brünger A, Brooks CL III, Karplus M. Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem Phys Lett. 1984;105:495.CrossRef Brünger A, Brooks CL III, Karplus M. Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem Phys Lett. 1984;105:495.CrossRef
32.
go back to reference Eichler A, Del Álamo Ruiz M, Plaza JA, Bachtold A. Strong coupling between mechanical modes in a nanotube resonator. Phys Rev Lett. 2012;109:025503.CrossRef Eichler A, Del Álamo Ruiz M, Plaza JA, Bachtold A. Strong coupling between mechanical modes in a nanotube resonator. Phys Rev Lett. 2012;109:025503.CrossRef
33.
go back to reference Koh H, Cannon JJ, Shiga T, Shiomi J, Chiashi S, Maruyama S. Thermally induced nonlinear vibration of single-walled carbon nanotubes. Phys Rev B. 2015;92:024306.CrossRef Koh H, Cannon JJ, Shiga T, Shiomi J, Chiashi S, Maruyama S. Thermally induced nonlinear vibration of single-walled carbon nanotubes. Phys Rev B. 2015;92:024306.CrossRef
34.
go back to reference Wang LF, Hu HY. Thermal vibration of a simply supported single-walled carbon nanotube with thermal stress. Acta Mech. 2016;227(7):1957–67.MathSciNetCrossRef Wang LF, Hu HY. Thermal vibration of a simply supported single-walled carbon nanotube with thermal stress. Acta Mech. 2016;227(7):1957–67.MathSciNetCrossRef
35.
go back to reference Tounsi A, Heireche H, Berrabah HM, Benzair A, Boumia L. Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field. J Appl Phys. 2008;104:104301.CrossRef Tounsi A, Heireche H, Berrabah HM, Benzair A, Boumia L. Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field. J Appl Phys. 2008;104:104301.CrossRef
36.
go back to reference Zhu WQ. Random vibration. Beijing: Science Press; 1998. Zhu WQ. Random vibration. Beijing: Science Press; 1998.
37.
go back to reference Ho CH, Scott RA, Elsley JG. Non-planar, non-linear oscillations of a beam-I, forced motions. Int J Non Linear Mech. 1975; 10: 113–127; Ho CH, Scott RA, Elsley JG. Non-planar, non-linear oscillations of a beam II, free motion. J Sound Vib. 1976; 47:333.CrossRef Ho CH, Scott RA, Elsley JG. Non-planar, non-linear oscillations of a beam-I, forced motions. Int J Non Linear Mech. 1975; 10: 113–127; Ho CH, Scott RA, Elsley JG. Non-planar, non-linear oscillations of a beam II, free motion. J Sound Vib. 1976; 47:333.CrossRef
38.
go back to reference Liu RM, Wang LF. Coupling between flexural modes in free vibration of single-walled carbon nanotubes. AIP Adv. 2015;5:127110.CrossRef Liu RM, Wang LF. Coupling between flexural modes in free vibration of single-walled carbon nanotubes. AIP Adv. 2015;5:127110.CrossRef
39.
go back to reference Crespo Da Silva MRM, Glynn CC. Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of motion. J Struct Mech. 1978; 6:437; Crespo Da Silva MRM, Glynn CC. Nonlinear flexural-flexural-torsional dynamics of inextensional beams. II. Forced motions. J Struct Mech. 1978; 6:449. Crespo Da Silva MRM, Glynn CC. Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of motion. J Struct Mech. 1978; 6:437; Crespo Da Silva MRM, Glynn CC. Nonlinear flexural-flexural-torsional dynamics of inextensional beams. II. Forced motions. J Struct Mech. 1978; 6:449.
40.
go back to reference He XQ, Kitipornchai S, Liew KM. Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nano. 2005;16:2086–91. He XQ, Kitipornchai S, Liew KM. Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nano. 2005;16:2086–91.
41.
go back to reference Wang LF, Hu HY. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects. J Appl Phys. 2014;115:233515.CrossRef Wang LF, Hu HY. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects. J Appl Phys. 2014;115:233515.CrossRef
42.
go back to reference Wang LF, Hu HY. Thermal vibration of a circular single-layered graphene sheet with simply supported or clamped boundary. J Sound Vib. 2015;349:206–15.CrossRef Wang LF, Hu HY. Thermal vibration of a circular single-layered graphene sheet with simply supported or clamped boundary. J Sound Vib. 2015;349:206–15.CrossRef
43.
go back to reference Leissa AW. Vibration of plates. Washington DC: NASA; 1969. Leissa AW. Vibration of plates. Washington DC: NASA; 1969.
44.
go back to reference Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL. Electromechanical resonators from graphene sheets. Science. 2007;315:490–3.CrossRef Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL. Electromechanical resonators from graphene sheets. Science. 2007;315:490–3.CrossRef
45.
go back to reference Cormier J, Rickman JM, Delph TJ. Stress calculation in atomistic simulations of perfect and imperfect solids. J Appl Phys. 2001;89:99–104.CrossRef Cormier J, Rickman JM, Delph TJ. Stress calculation in atomistic simulations of perfect and imperfect solids. J Appl Phys. 2001;89:99–104.CrossRef
46.
go back to reference Xu W, Wang LF, Jiang JN. Strain gradient finite element analysis on the vibration of double-layered graphene sheets. Int J Comput Methods. 2016;13:1650011.MathSciNetCrossRef Xu W, Wang LF, Jiang JN. Strain gradient finite element analysis on the vibration of double-layered graphene sheets. Int J Comput Methods. 2016;13:1650011.MathSciNetCrossRef
47.
go back to reference Liu RM, Wang LF, Jiang JN. Thermal vibration of a single-layered graphene with initial stress predicted by semiquantum molecular dynamics. Mater Res Express. 2016;3(9):095601.CrossRef Liu RM, Wang LF, Jiang JN. Thermal vibration of a single-layered graphene with initial stress predicted by semiquantum molecular dynamics. Mater Res Express. 2016;3(9):095601.CrossRef
48.
go back to reference Poot M, van der Zant HSJ. Nanomechanical properties of few-layer graphene membranes. Appl Phys Lett. 2008;92(6):063111.CrossRef Poot M, van der Zant HSJ. Nanomechanical properties of few-layer graphene membranes. Appl Phys Lett. 2008;92(6):063111.CrossRef
49.
go back to reference Natsuki T, Shi JX, Ni QQ. Vibration analysis of circular double-layered graphene sheets. J Appl Phys. 2012;111:044310.CrossRef Natsuki T, Shi JX, Ni QQ. Vibration analysis of circular double-layered graphene sheets. J Appl Phys. 2012;111:044310.CrossRef
Metadata
Title
Thermal Vibration of Carbon Nanostructures
Authors
Lifeng Wang
Haiyan Hu
Rumeng Liu
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_16

Premium Partners