Skip to main content

2019 | OriginalPaper | Buchkapitel

15. Thermal Vibration of Carbon Nanostructures

verfasst von : Lifeng Wang, Haiyan Hu, Rumeng Liu

Erschienen in: Handbook of Mechanics of Materials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The chapter presents the study on thermal vibration of nanostructures, such as carbon nanotube (CNT) and graphene, as well as the basic finding for the relation between the temperature and the root-of-mean-square (RMS) amplitude of the thermal vibration of the carbon nanostructures. In this study, the molecular dynamics (MD) based on modified Langevin dynamics, which accounts for quantum statistics by introducing a quantum heat bath, is used to simulate the thermal vibration of carbon nanostructures. The simulations show that the RMS amplitude of the thermal vibration of the carbon nanostructures obtained from the semi-quantum MD is lower than that obtained from the classical MD, especially for very low temperature and high-order vibration modes. The RMS amplitudes of the thermal vibrations of the single-walled CNT (SWCNT) and graphene obtained from the semi-quantum MD coincide well with those from the models of Timoshenko beam and Kirchhoff plate with quantum effects. These results indicate that quantum effects are important for the thermal vibration of the SWCNT and graphene in the case of high-order vibration modes, small size, and low temperature. Furthermore, the thermal vibration of a simply supported SWCNT subject to thermal stress is investigated by using the models of planar and non-planar nonlinear beams, respectively. The whirling motion with energy transfer between flexural motions is found in the SWCNT when the geometric nonlinearity is significant. The energies of different vibration modes are not equal even over a time scale of tens of nanoseconds, which is much larger than the period of fundamental natural vibration of the SWCNT at equilibrium state. The energies of different modes become equal when the time scale increases to the range of microseconds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Astumian RD. Thermodynamics and kinetics of a Brownian motor. Science. 1997;276:917.CrossRef Astumian RD. Thermodynamics and kinetics of a Brownian motor. Science. 1997;276:917.CrossRef
2.
Zurück zum Zitat Poncharal P, Wang ZL, Ugarte D, de Heer WA. Electrostatic deflections and electromechanical resonances of CNTs. Science. 1999;283:1513–6.CrossRef Poncharal P, Wang ZL, Ugarte D, de Heer WA. Electrostatic deflections and electromechanical resonances of CNTs. Science. 1999;283:1513–6.CrossRef
3.
Zurück zum Zitat Garcia-Sanchez D, San Paulo A, Esplandiu M, Perez-Murano F, Forró L, Aguasca A, Bachtold A. Mechanical detection of CNT resonator vibrations. Phys Rev Lett. 2007;99:085501. Garcia-Sanchez D, San Paulo A, Esplandiu M, Perez-Murano F, Forró L, Aguasca A, Bachtold A. Mechanical detection of CNT resonator vibrations. Phys Rev Lett. 2007;99:085501.
4.
Zurück zum Zitat Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56.CrossRef Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56.CrossRef
5.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.CrossRef
6.
Zurück zum Zitat Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS. Mechanics of CNTs. Appl Mech Rev. 2002;55:495–533.CrossRef Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS. Mechanics of CNTs. Appl Mech Rev. 2002;55:495–533.CrossRef
7.
Zurück zum Zitat Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual. Nature. 1996;381:678–80.CrossRef Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual. Nature. 1996;381:678–80.CrossRef
8.
Zurück zum Zitat Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young’s modulus of single-walled nanotubes. Phys Rev B. 1998;58(20):14013.CrossRef Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young’s modulus of single-walled nanotubes. Phys Rev B. 1998;58(20):14013.CrossRef
9.
Zurück zum Zitat Barnard AW, Sazonova V, van der Zande AM, McEuen PK. Fluctuation broadening in CNT resonators. Proc Natl Acad Sci U S A. 2012;109(47):19093–6.CrossRef Barnard AW, Sazonova V, van der Zande AM, McEuen PK. Fluctuation broadening in CNT resonators. Proc Natl Acad Sci U S A. 2012;109(47):19093–6.CrossRef
10.
Zurück zum Zitat Wang LF, HY H, Guo WL. Thermal vibration of CNTs predicted by beam models and molecular dynamics. Proc Roy Soc A. 2010;466(2120):2325–40.CrossRef Wang LF, HY H, Guo WL. Thermal vibration of CNTs predicted by beam models and molecular dynamics. Proc Roy Soc A. 2010;466(2120):2325–40.CrossRef
11.
Zurück zum Zitat Feng EH, Jones RE. Equilibrium thermal vibrations of CNTs. Phys Rev B. 2010;81:125436.CrossRef Feng EH, Jones RE. Equilibrium thermal vibrations of CNTs. Phys Rev B. 2010;81:125436.CrossRef
12.
Zurück zum Zitat Feng EH, Jones RE. CNT cantilevers for next-generation sensors. Phys Rev B. 2011;83:125412.CrossRef Feng EH, Jones RE. CNT cantilevers for next-generation sensors. Phys Rev B. 2011;83:125412.CrossRef
13.
Zurück zum Zitat Wang LF, Hu HY. Thermal vibration of double-walled carbon nanotubes predicted via double-Euler-beam model and molecular dynamics. Acta Mech. 2012;223(10):2107–15.MathSciNetCrossRef Wang LF, Hu HY. Thermal vibration of double-walled carbon nanotubes predicted via double-Euler-beam model and molecular dynamics. Acta Mech. 2012;223(10):2107–15.MathSciNetCrossRef
14.
Zurück zum Zitat Moser J, Eichler A, Güttinger J, Dykman MI, Bachtold A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat Nanotechnol. 2014;9:1007.CrossRef Moser J, Eichler A, Güttinger J, Dykman MI, Bachtold A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat Nanotechnol. 2014;9:1007.CrossRef
15.
Zurück zum Zitat Thomson WT. Theory of vibration with applications. Englewood Cliffs: Prentice-Hall; 1972. Thomson WT. Theory of vibration with applications. Englewood Cliffs: Prentice-Hall; 1972.
16.
Zurück zum Zitat Yoon J, CQ R, Mioduchowski A. Terahertz vibration of short CNTs modeled as Timoshenko beams. J Appl Mech. 2005;72(1):10–7.CrossRef Yoon J, CQ R, Mioduchowski A. Terahertz vibration of short CNTs modeled as Timoshenko beams. J Appl Mech. 2005;72(1):10–7.CrossRef
17.
Zurück zum Zitat Wang LF, Flexural HHY. Wave propagation in single-walled carbon nanotubes. Phys Rev B. 2005;71(19):195412.CrossRef Wang LF, Flexural HHY. Wave propagation in single-walled carbon nanotubes. Phys Rev B. 2005;71(19):195412.CrossRef
18.
Zurück zum Zitat Huang TC. The effect of rotatory inertia and of shear deformation on frequency and normal mode equations of uniform beams with simple end conditions. J Appl Mech. 1961;28:579–84.MathSciNetCrossRef Huang TC. The effect of rotatory inertia and of shear deformation on frequency and normal mode equations of uniform beams with simple end conditions. J Appl Mech. 1961;28:579–84.MathSciNetCrossRef
19.
Zurück zum Zitat Liew KM, YG H, He XQ. Flexural wave propagation in single-walled carbon nanotubes. J Comput Theor Nanosci. 2008;5:581.CrossRef Liew KM, YG H, He XQ. Flexural wave propagation in single-walled carbon nanotubes. J Comput Theor Nanosci. 2008;5:581.CrossRef
20.
Zurück zum Zitat Hone J, Batlogg B, Benes Z, Johnson AT, Fisher JE. Quantized phonon spectrum of single-walled CNTs. Science. 2000;289:1730–3.CrossRef Hone J, Batlogg B, Benes Z, Johnson AT, Fisher JE. Quantized phonon spectrum of single-walled CNTs. Science. 2000;289:1730–3.CrossRef
21.
Zurück zum Zitat O’Connell AD, Hofheinz M, Ansmann M, Bialczak RC, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis JM, Cleland AN. Quantum ground state and single-phonon control of a mechanical resonator. Nature. 2010;464:697–703.CrossRef O’Connell AD, Hofheinz M, Ansmann M, Bialczak RC, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis JM, Cleland AN. Quantum ground state and single-phonon control of a mechanical resonator. Nature. 2010;464:697–703.CrossRef
22.
Zurück zum Zitat Parrinello M, Car R. Unified approach for molecular dynamics and density - functional theory. Phys Rev Lett. 1985;55:2471–4.CrossRef Parrinello M, Car R. Unified approach for molecular dynamics and density - functional theory. Phys Rev Lett. 1985;55:2471–4.CrossRef
23.
Zurück zum Zitat Miller WH. Quantum dynamics of complex molecular systems. Proc Natl Acad Sci U S A. 2005;102:6660–4.CrossRef Miller WH. Quantum dynamics of complex molecular systems. Proc Natl Acad Sci U S A. 2005;102:6660–4.CrossRef
24.
Zurück zum Zitat Wang JS. Quantum thermal transport from classical molecular dynamics. Phys Rev Lett. 2007;99:160601.CrossRef Wang JS. Quantum thermal transport from classical molecular dynamics. Phys Rev Lett. 2007;99:160601.CrossRef
25.
Zurück zum Zitat Dammak H, Chalopin Y, Laroche M, Hayoun M, Greffet JJ. Quantum thermal bath for molecular dynamics simulation. Phys Rev Lett. 2009;103:190601.CrossRef Dammak H, Chalopin Y, Laroche M, Hayoun M, Greffet JJ. Quantum thermal bath for molecular dynamics simulation. Phys Rev Lett. 2009;103:190601.CrossRef
26.
Zurück zum Zitat Savin AV, Kosevich YA, Cantarero A. Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures. Phys Rev B. 2012;86:064305.CrossRef Savin AV, Kosevich YA, Cantarero A. Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures. Phys Rev B. 2012;86:064305.CrossRef
27.
Zurück zum Zitat Wang LF, Hu HY. Thermal vibration of single-walled CNTs with quantum effects. Proc Roy Soc A. 2014;470:20140087.CrossRef Wang LF, Hu HY. Thermal vibration of single-walled CNTs with quantum effects. Proc Roy Soc A. 2014;470:20140087.CrossRef
28.
Zurück zum Zitat Liu RM, Wang LF. Thermal vibration of a single-walled CNT predicted by semiquantum molecular dynamics. Phys Chem Chem Phys. 2015;17:5194–201.CrossRef Liu RM, Wang LF. Thermal vibration of a single-walled CNT predicted by semiquantum molecular dynamics. Phys Chem Chem Phys. 2015;17:5194–201.CrossRef
29.
Zurück zum Zitat Lahiri A. Statistical mechanics: an elementary outline. India: Universities Press Private Ltd; 2009. Lahiri A. Statistical mechanics: an elementary outline. India: Universities Press Private Ltd; 2009.
30.
Zurück zum Zitat Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter. 2002;14:783–802.CrossRef Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter. 2002;14:783–802.CrossRef
31.
Zurück zum Zitat Brünger A, Brooks CL III, Karplus M. Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem Phys Lett. 1984;105:495.CrossRef Brünger A, Brooks CL III, Karplus M. Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem Phys Lett. 1984;105:495.CrossRef
32.
Zurück zum Zitat Eichler A, Del Álamo Ruiz M, Plaza JA, Bachtold A. Strong coupling between mechanical modes in a nanotube resonator. Phys Rev Lett. 2012;109:025503.CrossRef Eichler A, Del Álamo Ruiz M, Plaza JA, Bachtold A. Strong coupling between mechanical modes in a nanotube resonator. Phys Rev Lett. 2012;109:025503.CrossRef
33.
Zurück zum Zitat Koh H, Cannon JJ, Shiga T, Shiomi J, Chiashi S, Maruyama S. Thermally induced nonlinear vibration of single-walled carbon nanotubes. Phys Rev B. 2015;92:024306.CrossRef Koh H, Cannon JJ, Shiga T, Shiomi J, Chiashi S, Maruyama S. Thermally induced nonlinear vibration of single-walled carbon nanotubes. Phys Rev B. 2015;92:024306.CrossRef
34.
Zurück zum Zitat Wang LF, Hu HY. Thermal vibration of a simply supported single-walled carbon nanotube with thermal stress. Acta Mech. 2016;227(7):1957–67.MathSciNetCrossRef Wang LF, Hu HY. Thermal vibration of a simply supported single-walled carbon nanotube with thermal stress. Acta Mech. 2016;227(7):1957–67.MathSciNetCrossRef
35.
Zurück zum Zitat Tounsi A, Heireche H, Berrabah HM, Benzair A, Boumia L. Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field. J Appl Phys. 2008;104:104301.CrossRef Tounsi A, Heireche H, Berrabah HM, Benzair A, Boumia L. Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field. J Appl Phys. 2008;104:104301.CrossRef
36.
Zurück zum Zitat Zhu WQ. Random vibration. Beijing: Science Press; 1998. Zhu WQ. Random vibration. Beijing: Science Press; 1998.
37.
Zurück zum Zitat Ho CH, Scott RA, Elsley JG. Non-planar, non-linear oscillations of a beam-I, forced motions. Int J Non Linear Mech. 1975; 10: 113–127; Ho CH, Scott RA, Elsley JG. Non-planar, non-linear oscillations of a beam II, free motion. J Sound Vib. 1976; 47:333.CrossRef Ho CH, Scott RA, Elsley JG. Non-planar, non-linear oscillations of a beam-I, forced motions. Int J Non Linear Mech. 1975; 10: 113–127; Ho CH, Scott RA, Elsley JG. Non-planar, non-linear oscillations of a beam II, free motion. J Sound Vib. 1976; 47:333.CrossRef
38.
Zurück zum Zitat Liu RM, Wang LF. Coupling between flexural modes in free vibration of single-walled carbon nanotubes. AIP Adv. 2015;5:127110.CrossRef Liu RM, Wang LF. Coupling between flexural modes in free vibration of single-walled carbon nanotubes. AIP Adv. 2015;5:127110.CrossRef
39.
Zurück zum Zitat Crespo Da Silva MRM, Glynn CC. Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of motion. J Struct Mech. 1978; 6:437; Crespo Da Silva MRM, Glynn CC. Nonlinear flexural-flexural-torsional dynamics of inextensional beams. II. Forced motions. J Struct Mech. 1978; 6:449. Crespo Da Silva MRM, Glynn CC. Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of motion. J Struct Mech. 1978; 6:437; Crespo Da Silva MRM, Glynn CC. Nonlinear flexural-flexural-torsional dynamics of inextensional beams. II. Forced motions. J Struct Mech. 1978; 6:449.
40.
Zurück zum Zitat He XQ, Kitipornchai S, Liew KM. Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nano. 2005;16:2086–91. He XQ, Kitipornchai S, Liew KM. Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nano. 2005;16:2086–91.
41.
Zurück zum Zitat Wang LF, Hu HY. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects. J Appl Phys. 2014;115:233515.CrossRef Wang LF, Hu HY. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects. J Appl Phys. 2014;115:233515.CrossRef
42.
Zurück zum Zitat Wang LF, Hu HY. Thermal vibration of a circular single-layered graphene sheet with simply supported or clamped boundary. J Sound Vib. 2015;349:206–15.CrossRef Wang LF, Hu HY. Thermal vibration of a circular single-layered graphene sheet with simply supported or clamped boundary. J Sound Vib. 2015;349:206–15.CrossRef
43.
Zurück zum Zitat Leissa AW. Vibration of plates. Washington DC: NASA; 1969. Leissa AW. Vibration of plates. Washington DC: NASA; 1969.
44.
Zurück zum Zitat Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL. Electromechanical resonators from graphene sheets. Science. 2007;315:490–3.CrossRef Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL. Electromechanical resonators from graphene sheets. Science. 2007;315:490–3.CrossRef
45.
Zurück zum Zitat Cormier J, Rickman JM, Delph TJ. Stress calculation in atomistic simulations of perfect and imperfect solids. J Appl Phys. 2001;89:99–104.CrossRef Cormier J, Rickman JM, Delph TJ. Stress calculation in atomistic simulations of perfect and imperfect solids. J Appl Phys. 2001;89:99–104.CrossRef
46.
Zurück zum Zitat Xu W, Wang LF, Jiang JN. Strain gradient finite element analysis on the vibration of double-layered graphene sheets. Int J Comput Methods. 2016;13:1650011.MathSciNetCrossRef Xu W, Wang LF, Jiang JN. Strain gradient finite element analysis on the vibration of double-layered graphene sheets. Int J Comput Methods. 2016;13:1650011.MathSciNetCrossRef
47.
Zurück zum Zitat Liu RM, Wang LF, Jiang JN. Thermal vibration of a single-layered graphene with initial stress predicted by semiquantum molecular dynamics. Mater Res Express. 2016;3(9):095601.CrossRef Liu RM, Wang LF, Jiang JN. Thermal vibration of a single-layered graphene with initial stress predicted by semiquantum molecular dynamics. Mater Res Express. 2016;3(9):095601.CrossRef
48.
Zurück zum Zitat Poot M, van der Zant HSJ. Nanomechanical properties of few-layer graphene membranes. Appl Phys Lett. 2008;92(6):063111.CrossRef Poot M, van der Zant HSJ. Nanomechanical properties of few-layer graphene membranes. Appl Phys Lett. 2008;92(6):063111.CrossRef
49.
Zurück zum Zitat Natsuki T, Shi JX, Ni QQ. Vibration analysis of circular double-layered graphene sheets. J Appl Phys. 2012;111:044310.CrossRef Natsuki T, Shi JX, Ni QQ. Vibration analysis of circular double-layered graphene sheets. J Appl Phys. 2012;111:044310.CrossRef
Metadaten
Titel
Thermal Vibration of Carbon Nanostructures
verfasst von
Lifeng Wang
Haiyan Hu
Rumeng Liu
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_16

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.