Skip to main content
Top
Published in: Journal of Computational Electronics 3/2018

16-04-2018

Thermoelectric, electronic and structural properties of CuNMn3 cubic antiperovskite

Authors: Y. Benmalem, A. Abbad, W. Benstaali, H. A. Bentounes, T. Seddik, T. Lantri

Published in: Journal of Computational Electronics | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using first-principles calculations, in this work we report the structural, electronic and, for the first time, thermoelectric properties of CuNMn3 cubic antiperovskite. The structural properties are explored using GGA and \(\hbox {GGA}{+}\hbox {U}\) approximations. Structural optimization shows that the compound is stable in the ferrimagnetic phase, and the electronic properties confirm the metallicity of this compound. At room temperature, high values of the Seebeck coefficient are obtained between \(-\) 0.8 and 0.5 \(\upmu (\hbox {eV})\) chemical potential, whereas outside this region the Seebeck coefficient diminishes. Also, thermal conductivities are minimal in this region of chemical potential; therefore, the material can be used to achieve thermocouples. Thermal conductivity is high for 900 K. The maximum electrical conductivity is obtained at 0.38 \(\upmu (\hbox {eV})\) chemical potential, with a value of \(4.15\times 10^{20}(\Omega ~\hbox {ms})^{-1}\). The figure of merit ZT values obtained are still low, so for thermoelectric applications of the material, it is necessary to improve the figure of merit coefficient by doping the material with a suitable element.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kamishima, K., Goto, T., Nakagawa, H., Miura, N., Ohashi, M., Mori, N., Sasaki, T., Kanomata, T.: Giant magneto resistance in the intermetallic compound Mn3GaC. Phys. Rev. B 63, 024426–024433 (2000)CrossRef Kamishima, K., Goto, T., Nakagawa, H., Miura, N., Ohashi, M., Mori, N., Sasaki, T., Kanomata, T.: Giant magneto resistance in the intermetallic compound Mn3GaC. Phys. Rev. B 63, 024426–024433 (2000)CrossRef
2.
go back to reference Li, Y.B., Li, W.F., Feng, W.J., Zhang, Y.Q., Zhang, Z.D.: Magnetic, transport and magnetotransport properties of \(\text{ Mn }_{3+{\rm x}}\text{ Sn }_{1-{\rm x}}\text{ C }\) and \(\text{ Mn }_{3}\text{ Zn }_{{\rm y}}\text{ Sn }_{1-{\rm y}}\text{ C }\) compounds. Phys. Rev. B 72, 024411–024412 (2005)CrossRef Li, Y.B., Li, W.F., Feng, W.J., Zhang, Y.Q., Zhang, Z.D.: Magnetic, transport and magnetotransport properties of \(\text{ Mn }_{3+{\rm x}}\text{ Sn }_{1-{\rm x}}\text{ C }\) and \(\text{ Mn }_{3}\text{ Zn }_{{\rm y}}\text{ Sn }_{1-{\rm y}}\text{ C }\) compounds. Phys. Rev. B 72, 024411–024412 (2005)CrossRef
3.
go back to reference Wang, B.S., Tong, P., Sun, Y.P., Li, L.J., Tang, W., Lu, W.J., Zhu, X.B., Yang, Z.R., Song, W.H.: Enhanced giant magnetoresistance in Ni-doped antiperovskite compounds \(\text{ GaCMn }_{3-{\rm x}}\text{ Ni }_{{\rm x}}\) (\(\text{ x }=0.05,0.10\)). Appl. Phys. Lett. 95(22), 222509–222514 (2009)CrossRef Wang, B.S., Tong, P., Sun, Y.P., Li, L.J., Tang, W., Lu, W.J., Zhu, X.B., Yang, Z.R., Song, W.H.: Enhanced giant magnetoresistance in Ni-doped antiperovskite compounds \(\text{ GaCMn }_{3-{\rm x}}\text{ Ni }_{{\rm x}}\) (\(\text{ x }=0.05,0.10\)). Appl. Phys. Lett. 95(22), 222509–222514 (2009)CrossRef
4.
go back to reference Yang, C., Tong, P., Lin, J.C., Lin, S., Cui, D.P., Wang, B.S., Song, W.H., Lu, W.J., Sun, Y.P.: Large magnetic entropy change associated with the weakly first-order paramagnetic to ferrimagnetic transition in antiperovskite manganese nitride CuNMn3. J. Appl. Phys. 116, 033902–033910 (2014)CrossRef Yang, C., Tong, P., Lin, J.C., Lin, S., Cui, D.P., Wang, B.S., Song, W.H., Lu, W.J., Sun, Y.P.: Large magnetic entropy change associated with the weakly first-order paramagnetic to ferrimagnetic transition in antiperovskite manganese nitride CuNMn3. J. Appl. Phys. 116, 033902–033910 (2014)CrossRef
5.
go back to reference Tong, P., Sun, Y.P., Zhu, X.B., Song, W.H.: Strong spin fluctuations and possible non-Fermi-liquid behavior in AlCNi3. Phys. Rev. B 74(22), 224416–224422 (2006)CrossRef Tong, P., Sun, Y.P., Zhu, X.B., Song, W.H.: Strong spin fluctuations and possible non-Fermi-liquid behavior in AlCNi3. Phys. Rev. B 74(22), 224416–224422 (2006)CrossRef
6.
go back to reference Tong, P., Sun, Y.P., Zhu, X.B., Song, W.H.: Strong electron–electron correlation in the antiperovskite compound GaCNi3. Phys. Rev. B 73, 245106–245107 (2006)CrossRef Tong, P., Sun, Y.P., Zhu, X.B., Song, W.H.: Strong electron–electron correlation in the antiperovskite compound GaCNi3. Phys. Rev. B 73, 245106–245107 (2006)CrossRef
7.
go back to reference Yu, M.-H., Lewis, L.H., Moodenbaugh, A.R.: Large magnetic entropy change in the metallic antiperovskite Mn3GaC. J. Appl. Phys. 93, 10128–10132 (2003)CrossRef Yu, M.-H., Lewis, L.H., Moodenbaugh, A.R.: Large magnetic entropy change in the metallic antiperovskite Mn3GaC. J. Appl. Phys. 93, 10128–10132 (2003)CrossRef
8.
go back to reference Wang, B.S., Tong, P., Sun, Y.P., Zhu, X.B., Luo, X., Li, G., Song, W.H., Yang, Z.R., Dai, J.M.: Reversible room-temperature magnetocaloric effect with large temperature span in antiperovskite compounds \(\text{ Ga }1-x\text{ CMn }3+x\) (\(x=0, 0.06, 0.07\) and 0.08). J. Appl. Phys. 105, 083907–083920 (2009)CrossRef Wang, B.S., Tong, P., Sun, Y.P., Zhu, X.B., Luo, X., Li, G., Song, W.H., Yang, Z.R., Dai, J.M.: Reversible room-temperature magnetocaloric effect with large temperature span in antiperovskite compounds \(\text{ Ga }1-x\text{ CMn }3+x\) (\(x=0, 0.06, 0.07\) and 0.08). J. Appl. Phys. 105, 083907–083920 (2009)CrossRef
9.
go back to reference Wang, B.S., Lin, J.C., Tong, P., Zhang, L., Lu, W.J., Zhu, X.B., Yang, Z.R., Song, W.H., Dai, J.M., Sun, Y.P.: Structural, magnetic, electrical transport properties, and reversible room-temperature magnetocaloric effect in antipervoskite compound AlCMn3. J. Appl. Phys. 108, 093925–093931 (2010)CrossRef Wang, B.S., Lin, J.C., Tong, P., Zhang, L., Lu, W.J., Zhu, X.B., Yang, Z.R., Song, W.H., Dai, J.M., Sun, Y.P.: Structural, magnetic, electrical transport properties, and reversible room-temperature magnetocaloric effect in antipervoskite compound AlCMn3. J. Appl. Phys. 108, 093925–093931 (2010)CrossRef
10.
go back to reference ÇAkır, O., Acet, M.: Reversibility in the inverse magnetocaloric effect in Mn3GaC studied by direct adiabatic temperature-change measurements. Appl. Phys. Lett. 100, 202404–202409 (2012)CrossRef ÇAkır, O., Acet, M.: Reversibility in the inverse magnetocaloric effect in Mn3GaC studied by direct adiabatic temperature-change measurements. Appl. Phys. Lett. 100, 202404–202409 (2012)CrossRef
11.
go back to reference Song, X., Sun, Z., Huang, Q., Rettenmayr, M., Liu, X.M., Seyring, M., Li, G.N., Rao, G.H., Yin, F.X.: Adjustable zero thermal expansion in antiperovskite manganese nitride. Adv. Mater. 23(40), 4690–4692 (2011)CrossRef Song, X., Sun, Z., Huang, Q., Rettenmayr, M., Liu, X.M., Seyring, M., Li, G.N., Rao, G.H., Yin, F.X.: Adjustable zero thermal expansion in antiperovskite manganese nitride. Adv. Mater. 23(40), 4690–4692 (2011)CrossRef
12.
go back to reference Wang, C., Chu, L.H., Yao, Q.R., Sun, Y., Wu, M.M., Ding, L., Yan, J., Na, Y.Y., Tang, W.H., Li, G.N., Huang, Q., Lynn, J.W.: Tuning the range, magnitude, and sign of the thermal expansion in intermetallic \(\text{ Mn }_{3}(\text{ Zn },\text{ M })_{{\rm x}}\text{ N }(\text{ M } = \text{ Ag },\text{ Ge })\). Phys. Rev. B 85(22), 220103–220110 (2012)CrossRef Wang, C., Chu, L.H., Yao, Q.R., Sun, Y., Wu, M.M., Ding, L., Yan, J., Na, Y.Y., Tang, W.H., Li, G.N., Huang, Q., Lynn, J.W.: Tuning the range, magnitude, and sign of the thermal expansion in intermetallic \(\text{ Mn }_{3}(\text{ Zn },\text{ M })_{{\rm x}}\text{ N }(\text{ M } = \text{ Ag },\text{ Ge })\). Phys. Rev. B 85(22), 220103–220110 (2012)CrossRef
13.
go back to reference Song, B., Jian, J., Bao, H., Lei, M., Li, H.: Observation of spin-glass behavior in antiperovskite Mn3GaN. Appl. Phys. Lett. 92(19), 192511–192517 (2008)CrossRef Song, B., Jian, J., Bao, H., Lei, M., Li, H.: Observation of spin-glass behavior in antiperovskite Mn3GaN. Appl. Phys. Lett. 92(19), 192511–192517 (2008)CrossRef
14.
go back to reference Huang, R.J., Li, L.F., Cai, F.S., Xu, X.D., Qian, L.H.: Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si. Appl. Phys. Lett. 93, 081902–081907 (2008)CrossRef Huang, R.J., Li, L.F., Cai, F.S., Xu, X.D., Qian, L.H.: Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si. Appl. Phys. Lett. 93, 081902–081907 (2008)CrossRef
15.
go back to reference Toberer, E.S., May, A.F., Scanlon, C.J., Snyder, G.J.: Thermoelectric properties of \(p\)-type LiZnSb: assessment of \(ab\) initio calculations. J. Appl. Phys. 105(6), 063701–063706 (2009)CrossRef Toberer, E.S., May, A.F., Scanlon, C.J., Snyder, G.J.: Thermoelectric properties of \(p\)-type LiZnSb: assessment of \(ab\) initio calculations. J. Appl. Phys. 105(6), 063701–063706 (2009)CrossRef
16.
go back to reference Chi, E.O., Kim, S., Hur, N.H.: Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3. Solid State Commun. 120, 307–310 (2001)CrossRef Chi, E.O., Kim, S., Hur, N.H.: Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3. Solid State Commun. 120, 307–310 (2001)CrossRef
17.
go back to reference Takenaka, K., Takagi, H.: Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 87(2005), 261902–261907 (2005)CrossRef Takenaka, K., Takagi, H.: Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 87(2005), 261902–261907 (2005)CrossRef
18.
go back to reference Asano, K., Koyama, K., Takenaka, K.: Magnetostriction in Mn3CuN. Appl. Phys. Lett. 92(16), 161909–161916 (2008)CrossRef Asano, K., Koyama, K., Takenaka, K.: Magnetostriction in Mn3CuN. Appl. Phys. Lett. 92(16), 161909–161916 (2008)CrossRef
19.
go back to reference Kohn, W., Sham, L.S.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965)MathSciNetCrossRef Kohn, W., Sham, L.S.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965)MathSciNetCrossRef
20.
go back to reference Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 12, 3060–3083 (1975)CrossRef Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 12, 3060–3083 (1975)CrossRef
21.
go back to reference Schwarz, K., Blaha, P.: Solid state calculations using WIEN2k. Comput. Mater. Sci. 28, 259–273 (2003)CrossRef Schwarz, K., Blaha, P.: Solid state calculations using WIEN2k. Comput. Mater. Sci. 28, 259–273 (2003)CrossRef
22.
go back to reference Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K-An Augmented Plane Wave and Local Orbital Program for Calculating Crystal Properties. Technische Universität Wien, Wien (2001) Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K-An Augmented Plane Wave and Local Orbital Program for Calculating Crystal Properties. Technische Universität Wien, Wien (2001)
23.
go back to reference Rached, H., Bendaoudia, S., Rached, D.: Investigation of Iron-based double perovskite oxides on the magnetic phase stability, mechanical, electronic and optical properties via first-principles calculation. Mater. Chem. Phys. 193, 453–469 (2017)CrossRef Rached, H., Bendaoudia, S., Rached, D.: Investigation of Iron-based double perovskite oxides on the magnetic phase stability, mechanical, electronic and optical properties via first-principles calculation. Mater. Chem. Phys. 193, 453–469 (2017)CrossRef
24.
go back to reference Benmhidi, H., Rached, H., Rached, D., Benkabou, M.: Ab initio study of electronic structure, elastic and transport properties of fluoroperovskite \(\text{ LiBeF }_{3}\). J. Electron. Mater. 46(4), 2205–2210 (2017)CrossRef Benmhidi, H., Rached, H., Rached, D., Benkabou, M.: Ab initio study of electronic structure, elastic and transport properties of fluoroperovskite \(\text{ LiBeF }_{3}\). J. Electron. Mater. 46(4), 2205–2210 (2017)CrossRef
25.
go back to reference Bentouaf, A., Mebsout, R., Rached, H., Amari, S., Reshak, A.H., Aïssa, B.: Theoretical investigation of the structural, electronic, magnetic and elastic properties of binary cubic C15-Laves phases TbX2 (\(X = \text{ Co }\) and Fe). J. Alloys Compd. 689, 885–893 (2016)CrossRef Bentouaf, A., Mebsout, R., Rached, H., Amari, S., Reshak, A.H., Aïssa, B.: Theoretical investigation of the structural, electronic, magnetic and elastic properties of binary cubic C15-Laves phases TbX2 (\(X = \text{ Co }\) and Fe). J. Alloys Compd. 689, 885–893 (2016)CrossRef
26.
go back to reference Asfour, I., Rached, H., Benalia, S., Rached, D.: Investigation of electronic structure, magnetic properties and thermal properties of the new half-metallic ferromagnetic full-Heusler alloys Cr2GdSi1-xGex: an ab-initio study. J. Alloys Compd. 676, 440–451 (2016)CrossRef Asfour, I., Rached, H., Benalia, S., Rached, D.: Investigation of electronic structure, magnetic properties and thermal properties of the new half-metallic ferromagnetic full-Heusler alloys Cr2GdSi1-xGex: an ab-initio study. J. Alloys Compd. 676, 440–451 (2016)CrossRef
27.
go back to reference Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density gradient expension for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406–136422 (2008)CrossRef Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density gradient expension for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406–136422 (2008)CrossRef
28.
go back to reference Anisimov, V.I., Gunnarsson, O.: Density functional calculation of effective Coulomb interactions in metal. Phys. Rev. B 43, 7570–7574 (1991)CrossRef Anisimov, V.I., Gunnarsson, O.: Density functional calculation of effective Coulomb interactions in metal. Phys. Rev. B 43, 7570–7574 (1991)CrossRef
29.
go back to reference Anisimov, V.I., Zaanen, J., Andersen, O.K.: Band theory and Mott insulators: Hubbard \(U\) instead of Stoner. Phys. Rev. B 44, 943–954 (1991)CrossRef Anisimov, V.I., Zaanen, J., Andersen, O.K.: Band theory and Mott insulators: Hubbard \(U\) instead of Stoner. Phys. Rev. B 44, 943–954 (1991)CrossRef
31.
go back to reference Zahid, A., Ahmad, I., Shafiq, M., Khan, I.: Magneto-electronic studies of anti-perovskites NiNMn3 and ZnNMn3. Comput. Mater. Sci. 81, 141–145 (2014)CrossRef Zahid, A., Ahmad, I., Shafiq, M., Khan, I.: Magneto-electronic studies of anti-perovskites NiNMn3 and ZnNMn3. Comput. Mater. Sci. 81, 141–145 (2014)CrossRef
32.
go back to reference Madsen, G.K.H., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)CrossRefMATH Madsen, G.K.H., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)CrossRefMATH
33.
go back to reference Kim, J.Y., Oh, M.W., Lee, S., Cho, Y.C., Yoon, J.H., Lee, G.W., Cho, C.R., Park, C.H., Jeong, S.Y.: Abnormal drop in electrical resistivity with impurity doping of with single-crystal Ag. Sci. Rep. 4, 5450–5454 (2014)CrossRef Kim, J.Y., Oh, M.W., Lee, S., Cho, Y.C., Yoon, J.H., Lee, G.W., Cho, C.R., Park, C.H., Jeong, S.Y.: Abnormal drop in electrical resistivity with impurity doping of with single-crystal Ag. Sci. Rep. 4, 5450–5454 (2014)CrossRef
34.
go back to reference Scheidemantel, T.J., Ambrosch-Draxl, C., Thonhauser, T., Badding, J.V., Sofo, J.O.: Transport coefficients from first principles calculations. Phys. Rev. B 68(6), 125210–125211 (2003)CrossRef Scheidemantel, T.J., Ambrosch-Draxl, C., Thonhauser, T., Badding, J.V., Sofo, J.O.: Transport coefficients from first principles calculations. Phys. Rev. B 68(6), 125210–125211 (2003)CrossRef
35.
go back to reference Na, Y., Wang, C., Tomasella, E., Cellier, J., Xiang, J.: Effect of Cu doping on structural and magnetic properties of antiperovskite \(\text{ Mn }_{3}\text{ Ni(Cu)N }\) thin films. J. Alloys Compd. 647, 35–40 (2015)CrossRef Na, Y., Wang, C., Tomasella, E., Cellier, J., Xiang, J.: Effect of Cu doping on structural and magnetic properties of antiperovskite \(\text{ Mn }_{3}\text{ Ni(Cu)N }\) thin films. J. Alloys Compd. 647, 35–40 (2015)CrossRef
36.
go back to reference Bilal, M., Ahmad, S.I., Jalali-Asadabadi, S., Ahmad, R., Shafiq, M.: DFT and post-DFT studies of metallic MXY3-type compounds for low temperature TE applications. Solid State Commun. 243, 28–35 (2016)CrossRef Bilal, M., Ahmad, S.I., Jalali-Asadabadi, S., Ahmad, R., Shafiq, M.: DFT and post-DFT studies of metallic MXY3-type compounds for low temperature TE applications. Solid State Commun. 243, 28–35 (2016)CrossRef
37.
go back to reference Bilal, M., Ahmad, I., Jalali-Asadabadi, S., Ahmad, R., Maqbool, M.: Thermoelectric properties of metallic antiperovskites \(\text{ AXD }_{3}\) (\(A = \text{ Ge, } \text{ Sn, } \text{ Pb, } \text{ Al, } \text{ Zn, } \text{ Ga }\); \(X=\text{ N, } \text{ C }\); \(D=\text{ Ca, } \text{ Fe, } \text{ Co }\)). Electron. Mater. 11, 466–480 (2015)CrossRef Bilal, M., Ahmad, I., Jalali-Asadabadi, S., Ahmad, R., Maqbool, M.: Thermoelectric properties of metallic antiperovskites \(\text{ AXD }_{3}\) (\(A = \text{ Ge, } \text{ Sn, } \text{ Pb, } \text{ Al, } \text{ Zn, } \text{ Ga }\); \(X=\text{ N, } \text{ C }\); \(D=\text{ Ca, } \text{ Fe, } \text{ Co }\)). Electron. Mater. 11, 466–480 (2015)CrossRef
38.
go back to reference Bilal, M., Jalali-Asadabadi, S., Ahmad, R., Ahmad, I.: Electronic properties of antiperovskite materials from state-of-the-art density functional theory. J. Chem. 2015, 1–11 (2015)CrossRef Bilal, M., Jalali-Asadabadi, S., Ahmad, R., Ahmad, I.: Electronic properties of antiperovskite materials from state-of-the-art density functional theory. J. Chem. 2015, 1–11 (2015)CrossRef
39.
go back to reference Rabin, O., Yu-Ming, L., Dresselhaus, M.S.: Anomalously high thermoelectric figure of merit in Bi1ÀxSbx nanowires by carrier pocket alignment. Appl. Phys. Lett. 79, 81–83 (2001)CrossRef Rabin, O., Yu-Ming, L., Dresselhaus, M.S.: Anomalously high thermoelectric figure of merit in Bi1ÀxSbx nanowires by carrier pocket alignment. Appl. Phys. Lett. 79, 81–83 (2001)CrossRef
40.
go back to reference Takeuchi, T.: Conditions of electronic structure to obtain large dimensionless figure of merit for developing practical thermoelectric materials. Mater. Trans. 50, 2359–2365 (2009)CrossRef Takeuchi, T.: Conditions of electronic structure to obtain large dimensionless figure of merit for developing practical thermoelectric materials. Mater. Trans. 50, 2359–2365 (2009)CrossRef
Metadata
Title
Thermoelectric, electronic and structural properties of CuNMn3 cubic antiperovskite
Authors
Y. Benmalem
A. Abbad
W. Benstaali
H. A. Bentounes
T. Seddik
T. Lantri
Publication date
16-04-2018
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2018
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1172-2

Other articles of this Issue 3/2018

Journal of Computational Electronics 3/2018 Go to the issue