Skip to main content
Top
Published in: Journal of Computational Electronics 3/2018

04-05-2018

Atomistic tight-binding simulations of quaternary-alloyed \(\hbox {Zn}_{x}\hbox {Cd}_{1-x}\hbox {S}_{y}\hbox {Se}_{1-y}\) nanocrystals

Author: Worasak Sukkabot

Published in: Journal of Computational Electronics | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Advancement of alloyed nanocrystals with attractive structural and optical properties for use in a wide range of physical, chemical, and biological applications represents a growing research field. Employing atomistic tight-binding theory combined with the virtual crystal approximation, the electronic structure and optical properties of quaternary-alloyed \(\hbox {Zn}_{{x}}\hbox {Cd}_{1-{x}} \hbox {S}_{{y}}\hbox {Se}_{1-{y}}\) nanocrystals with experimentally synthesized compositions (x and y) and sizes were investigated. Analysis of the results shows that the physical properties are mainly sensitive to the concentrations (x and y) and the diameter. With decreasing x and y contents, the optical bandgap is reduced because the contributions of the materials with narrower bulk bandgap (ZnSe and CdSe) is mostly promoted. The optical bandgap is reduced with increasing diameter due to the quantum confinement effect. The optical bandgap calculated based on tight-binding calculations shows discrepancy of less than 0.4 eV from experiment. Most importantly, the optical emission is continuously tunable across the entire visible spectrum. The conduction and valence bands are predominantly contributed by cation and anion atoms, respectively. The optical properties are obviously improved in Cd- and Se-rich quaternary \(\hbox {Zn}_{{x}}\hbox {Cd}_{1-{x}} \hbox {S}_{{y}}\hbox {Se}_{1-{y}}\) nanocrystals with large diameter. The atomistic electron–hole interactions can be hybrid-engineered by tuning either the contents (x and y) or diameter. The Stokes shift becomes more pronounced with decreasing alloy concentrations (x and y) and diameter, as described by the trend of the atomistic electron–hole exchange interaction. The present systematic study provides a new avenue to understand the unique size- and composition-dependent structural and optical properties of quaternary-alloyed \(\hbox {Zn}_{{x}}\hbox {Cd}_{1-{x}} \hbox {S}_{{y}}\hbox {Se}_{1-{y}}\) nanocrystals for broad use in multicolor bioimaging, biosensing, light-emitting diodes, solar cells, and other nanodevice applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alivisatos, A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)CrossRef Alivisatos, A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)CrossRef
2.
go back to reference Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)CrossRef Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)CrossRef
3.
go back to reference Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)CrossRef Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)CrossRef
4.
go back to reference Murray, C.B., Kagan, C.R., Bawendi, M.G.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 30, 545–610 (2000)CrossRef Murray, C.B., Kagan, C.R., Bawendi, M.G.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 30, 545–610 (2000)CrossRef
5.
go back to reference Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)CrossRef Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)CrossRef
6.
go back to reference Rogach, A.L., Franzl, T., Klar, T.A., Feldmann, J., Gaponik, N., Lesnyak, V., Shavel, A., Eychmüller, A., Rakovich, Y.P., Donegan, J.F.: Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. J. Phys. Chem. C 111, 14628–14637 (2007)CrossRef Rogach, A.L., Franzl, T., Klar, T.A., Feldmann, J., Gaponik, N., Lesnyak, V., Shavel, A., Eychmüller, A., Rakovich, Y.P., Donegan, J.F.: Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. J. Phys. Chem. C 111, 14628–14637 (2007)CrossRef
7.
go back to reference Li, Y.L., Jing, L.H., Qiao, R.R., Gao, M.Y.: Aqueous synthesis of CdTe nanocrystals: progresses and perspectives. Chem. Commun. 47, 9293–9311 (2011)CrossRef Li, Y.L., Jing, L.H., Qiao, R.R., Gao, M.Y.: Aqueous synthesis of CdTe nanocrystals: progresses and perspectives. Chem. Commun. 47, 9293–9311 (2011)CrossRef
8.
go back to reference Ma, Q., Su, X.: Recent advances and applications in QDs-based sensors. Analyst 136, 4883–4893 (2011)CrossRef Ma, Q., Su, X.: Recent advances and applications in QDs-based sensors. Analyst 136, 4883–4893 (2011)CrossRef
9.
go back to reference Qi, L., Gao, X.: Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano 2(7), 1403–1410 (2008)CrossRef Qi, L., Gao, X.: Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano 2(7), 1403–1410 (2008)CrossRef
10.
go back to reference Smith, A.M., Nie, S.: Next-generation quantum dots. Nat. Biotechnol. 27, 732–733 (2009)CrossRef Smith, A.M., Nie, S.: Next-generation quantum dots. Nat. Biotechnol. 27, 732–733 (2009)CrossRef
11.
go back to reference Zrazhevskiy, P., Gao, X.: Multifunctional quantum dots for personalized medicine. Nano Today 4(5), 414–428 (2009)CrossRef Zrazhevskiy, P., Gao, X.: Multifunctional quantum dots for personalized medicine. Nano Today 4(5), 414–428 (2009)CrossRef
12.
go back to reference Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, H., Bawendi, M.G.: Optical gain and stimulated emission in nanocrystal quantum dots. Science 290(5490), 314–317 (2000)CrossRef Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, H., Bawendi, M.G.: Optical gain and stimulated emission in nanocrystal quantum dots. Science 290(5490), 314–317 (2000)CrossRef
13.
go back to reference Qingjiang Sun, Y., Wang, A., Li, L.S., Wang, D., Zhu, T., Xu, J., Yang, C., Li, Y.: Bright, multicoloured light emitting diodes based on quantum dots. Nat. Photon. 1, 717–722 (2007)CrossRef Qingjiang Sun, Y., Wang, A., Li, L.S., Wang, D., Zhu, T., Xu, J., Yang, C., Li, Y.: Bright, multicoloured light emitting diodes based on quantum dots. Nat. Photon. 1, 717–722 (2007)CrossRef
14.
go back to reference Caruge, J.M., Halpert, J.E., Wood, V., Bulovic, V., Bawendi, M.G.: Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photon. 2, 247–250 (2008)CrossRef Caruge, J.M., Halpert, J.E., Wood, V., Bulovic, V., Bawendi, M.G.: Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photon. 2, 247–250 (2008)CrossRef
15.
go back to reference Ma, W., Luther, J.M., Zheng, H., Wu, Y., Alivisatos, A.P.: Photovoltaic devices employing ternary \(\text{ PbS }_{{\rm x}}\text{ Se }_{1-{\rm x}}\) nanocrystals. Nano Lett. 9(4), 1699–1703 (2009)CrossRef Ma, W., Luther, J.M., Zheng, H., Wu, Y., Alivisatos, A.P.: Photovoltaic devices employing ternary \(\text{ PbS }_{{\rm x}}\text{ Se }_{1-{\rm x}}\) nanocrystals. Nano Lett. 9(4), 1699–1703 (2009)CrossRef
16.
go back to reference Wang, X., Ren, X., Kahen, K., Hahn, M.A., Rajeswaran, M., MaccagnanoZacher, S., Silcox, J., Cragg, G., Efros, A.L., Krauss, T.D.: Non-blinking semiconductor nanocrystals. Nature 459, 686–689 (2009)CrossRef Wang, X., Ren, X., Kahen, K., Hahn, M.A., Rajeswaran, M., MaccagnanoZacher, S., Silcox, J., Cragg, G., Efros, A.L., Krauss, T.D.: Non-blinking semiconductor nanocrystals. Nature 459, 686–689 (2009)CrossRef
17.
go back to reference Deng, Z., Yan, H., Liu, Y.: Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method. J. Am. Chem. Soc. 131(49), 17744–17745 (2009)CrossRef Deng, Z., Yan, H., Liu, Y.: Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method. J. Am. Chem. Soc. 131(49), 17744–17745 (2009)CrossRef
18.
go back to reference Liu, G., Liu, C., Bard, A.J.: Rapid synthesis and screening of \(\text{ Zn }_{{\rm x}}\text{ Cd }_{1-{\rm x}}\text{ S }_{{\rm y}}\text{ Se }_{1-{\rm y}}\) photocatalysts by scanning electrochemical microscopy. J. Phys. Chem. C 114(49), 20997–21002 (2010)CrossRef Liu, G., Liu, C., Bard, A.J.: Rapid synthesis and screening of \(\text{ Zn }_{{\rm x}}\text{ Cd }_{1-{\rm x}}\text{ S }_{{\rm y}}\text{ Se }_{1-{\rm y}}\) photocatalysts by scanning electrochemical microscopy. J. Phys. Chem. C 114(49), 20997–21002 (2010)CrossRef
19.
go back to reference Yang, F., Zhancheng, X., Wang, J., Zan, F., Dong, C., Ren, J.: Microwave-assisted aqueous synthesis of new quaternary-alloyed CdSeTeS quantum dots; and their bioapplications in targeted imaging of cancer cells. Luminescence 28, 392–400 (2013)CrossRef Yang, F., Zhancheng, X., Wang, J., Zan, F., Dong, C., Ren, J.: Microwave-assisted aqueous synthesis of new quaternary-alloyed CdSeTeS quantum dots; and their bioapplications in targeted imaging of cancer cells. Luminescence 28, 392–400 (2013)CrossRef
20.
go back to reference Kwon, S.J., Jeong, H.-M., Jung, K., Ko, D.-H., Ko, H., Han, I.-K., Kim, G.T., Park, J.-G.: Structural origin of the band gap anomaly of quaternary alloy Cd\(_{x}\)Zn\(_{1-x}\)S\(_{y}\)Se\(_{1-y}\) nanowires, nanobelts, and nanosheets in the visible spectrum. ACS Nano 9(5), 5486–5499 (2015)CrossRef Kwon, S.J., Jeong, H.-M., Jung, K., Ko, D.-H., Ko, H., Han, I.-K., Kim, G.T., Park, J.-G.: Structural origin of the band gap anomaly of quaternary alloy Cd\(_{x}\)Zn\(_{1-x}\)S\(_{y}\)Se\(_{1-y}\) nanowires, nanobelts, and nanosheets in the visible spectrum. ACS Nano 9(5), 5486–5499 (2015)CrossRef
21.
go back to reference Adegoke, O., Park, E.Y.: Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in \(l\)-cysteine-capped alloyed quaternary CdZnTeS quantum dots. Sci. Rep. 6, 27288–27296 (2016)CrossRef Adegoke, O., Park, E.Y.: Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in \(l\)-cysteine-capped alloyed quaternary CdZnTeS quantum dots. Sci. Rep. 6, 27288–27296 (2016)CrossRef
22.
go back to reference Adegoke, O., Nyokong, T., Forbes, P.B.C.: Structural and optical properties of alloyed quaternary CdSeTeS core and CdSeTeS/ZnS core-shell quantum dots. J. Alloys Compd. 645, 443–449 (2015)CrossRef Adegoke, O., Nyokong, T., Forbes, P.B.C.: Structural and optical properties of alloyed quaternary CdSeTeS core and CdSeTeS/ZnS core-shell quantum dots. J. Alloys Compd. 645, 443–449 (2015)CrossRef
23.
go back to reference Vogl, P., Hjalmarson, H.P., Dow, J.D.: A Semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44, 365–378 (1983)CrossRef Vogl, P., Hjalmarson, H.P., Dow, J.D.: A Semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44, 365–378 (1983)CrossRef
24.
go back to reference Lee, S., Oyafuso, F., von Allmen, P., Klimeck, G.: Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B 69, 045316–045323 (2004)CrossRef Lee, S., Oyafuso, F., von Allmen, P., Klimeck, G.: Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B 69, 045316–045323 (2004)CrossRef
25.
go back to reference Olguin, D., Baquero, R., de Coss, R.: The band gap of II–VI ternary alloys in a tight-binding description. Revista Mexicana de Fisica 47(1), 43–49 (2001) Olguin, D., Baquero, R., de Coss, R.: The band gap of II–VI ternary alloys in a tight-binding description. Revista Mexicana de Fisica 47(1), 43–49 (2001)
26.
go back to reference Akinci, O., Gurel, H.H., Unlu, H.: Semiempirical tight binding modeling of Cd based II–VI heterostructures for solar cells. Thin Solid Films 511, 684–689 (2006)CrossRef Akinci, O., Gurel, H.H., Unlu, H.: Semiempirical tight binding modeling of Cd based II–VI heterostructures for solar cells. Thin Solid Films 511, 684–689 (2006)CrossRef
27.
go back to reference Madelung, O.: Numerical Data and Functional Relationships in Science and Technology, Part a of vol. 17, Springer, New York, 1982 and Part d of Vol. 17 (1984) Madelung, O.: Numerical Data and Functional Relationships in Science and Technology, Part a of vol. 17, Springer, New York, 1982 and Part d of Vol. 17 (1984)
28.
go back to reference Harrison, W.A.: Elementary Electronic Structure. World Scientific, River Edge (1999)CrossRef Harrison, W.A.: Elementary Electronic Structure. World Scientific, River Edge (1999)CrossRef
29.
go back to reference Fiorentini, V., Baldereschi, A.: Dielectric scaling of the self-energy scissor operator in semiconductors and insulators. Phys. Rev. B 51, 17196–17198 (1995)CrossRef Fiorentini, V., Baldereschi, A.: Dielectric scaling of the self-energy scissor operator in semiconductors and insulators. Phys. Rev. B 51, 17196–17198 (1995)CrossRef
30.
go back to reference Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k. An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna (2001) Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k. An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna (2001)
31.
go back to reference Garcıa, A.E., Camacho, A., Navarro, H., Olguın, D., Baquero, R.: Electronic band structure of II–VI quaternary alloys in a tight binding approach. Rev. Mexicana de Física 46, 249–258 (2000) Garcıa, A.E., Camacho, A., Navarro, H., Olguın, D., Baquero, R.: Electronic band structure of II–VI quaternary alloys in a tight binding approach. Rev. Mexicana de Física 46, 249–258 (2000)
32.
go back to reference Korkusinski, M., Hawrylak, P.: Atomistic theory of emission from dark excitons in self-assembled quantum dots. Phys. Rev. B 87, 115310–115320 (2013)CrossRef Korkusinski, M., Hawrylak, P.: Atomistic theory of emission from dark excitons in self-assembled quantum dots. Phys. Rev. B 87, 115310–115320 (2013)CrossRef
33.
go back to reference Zieliński, M.: Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots. J. Phys.: Condens. Matter 25, 465301–465316 (2013) Zieliński, M.: Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots. J. Phys.: Condens. Matter 25, 465301–465316 (2013)
34.
go back to reference Reboredo, F.A., Franceschetti, A., Zunger, A.: Dark excitons due to direct Coulomb interactions in silicon quantum dots. Phys. Rev. B 61, 13073–13087 (2000)CrossRef Reboredo, F.A., Franceschetti, A., Zunger, A.: Dark excitons due to direct Coulomb interactions in silicon quantum dots. Phys. Rev. B 61, 13073–13087 (2000)CrossRef
35.
go back to reference de Oliveira, E.L., Albuquerque, E.L., de Sousa, J.S., Farias, G.A., Peeters, F.M.: Configuration-interaction excitonic absorption in small Si/Ge and Ge/Si Core/Shell nanocrystals. J. Phys. Chem. C 116, 4399–4407 (2012)CrossRef de Oliveira, E.L., Albuquerque, E.L., de Sousa, J.S., Farias, G.A., Peeters, F.M.: Configuration-interaction excitonic absorption in small Si/Ge and Ge/Si Core/Shell nanocrystals. J. Phys. Chem. C 116, 4399–4407 (2012)CrossRef
36.
go back to reference Sukkabot, W.: Excitonic fine structure splitting in ZnTe/ZnX (X=S and Se) core/shell nanocrystals: atomistic tight-binding theory. Superlattices Microstruct. 91, 208–215 (2016)CrossRef Sukkabot, W.: Excitonic fine structure splitting in ZnTe/ZnX (X=S and Se) core/shell nanocrystals: atomistic tight-binding theory. Superlattices Microstruct. 91, 208–215 (2016)CrossRef
37.
go back to reference Sukkabot, W.: Atomistic tight-binding computations of excitonic fine structure splitting in CdSe/ZnSe type-I and ZnSe/CdSe invert type-I core/shell nanocrystals. Mater. Sci. Semicond. Process. 47, 57–61 (2016)CrossRef Sukkabot, W.: Atomistic tight-binding computations of excitonic fine structure splitting in CdSe/ZnSe type-I and ZnSe/CdSe invert type-I core/shell nanocrystals. Mater. Sci. Semicond. Process. 47, 57–61 (2016)CrossRef
38.
go back to reference Sukkabot, W.: Atomistic tight-binding computations in structural and optical properties of CdSe/ZnSe/ZnS core/multi-shell nanocrystals. Superlattices Microstruct. 95, 71–77 (2016)CrossRef Sukkabot, W.: Atomistic tight-binding computations in structural and optical properties of CdSe/ZnSe/ZnS core/multi-shell nanocrystals. Superlattices Microstruct. 95, 71–77 (2016)CrossRef
39.
go back to reference Brovelli, S., Schaller, R.D., Crooker, S.A., García-Santamaría, F., Chen, Y., Viswanatha, R., Hollingsworth, J.A., Htoon, H., Klimov, V.I.: Nano-engineered electron–hole exchange interaction controls exciton dynamics in core-shell semiconductor nanocrystals. Nat. Commun. 2(280), 1–8 (2011) Brovelli, S., Schaller, R.D., Crooker, S.A., García-Santamaría, F., Chen, Y., Viswanatha, R., Hollingsworth, J.A., Htoon, H., Klimov, V.I.: Nano-engineered electron–hole exchange interaction controls exciton dynamics in core-shell semiconductor nanocrystals. Nat. Commun. 2(280), 1–8 (2011)
40.
go back to reference Efros, A.L., Rosen, M., Kuno, M., Nirmal, M., Norris, D.J., Bawendi, M.: Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54(7), 4843–4856 (1996)CrossRef Efros, A.L., Rosen, M., Kuno, M., Nirmal, M., Norris, D.J., Bawendi, M.: Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54(7), 4843–4856 (1996)CrossRef
41.
go back to reference Butler, J.: Advanced Topics in Forensic DNA Typing: Methodology. Academic Press, Cambridge (2011) Butler, J.: Advanced Topics in Forensic DNA Typing: Methodology. Academic Press, Cambridge (2011)
Metadata
Title
Atomistic tight-binding simulations of quaternary-alloyed nanocrystals
Author
Worasak Sukkabot
Publication date
04-05-2018
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2018
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1179-8

Other articles of this Issue 3/2018

Journal of Computational Electronics 3/2018 Go to the issue