Skip to main content
Top
Published in: Journal of Computational Electronics 3/2018

20-06-2018

A general analytical method for finding the quantum capacitance of graphene

Author: Jerry P. Selvaggi

Published in: Journal of Computational Electronics | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The quantum capacitance of graphene has been modeled in numerous articles using approximate analytical expressions and numerical methods. However, no article shows how to analytically find the quantum capacitance of graphene for the full temperature range and for any Fermi level. This, of course, would require a complete analytical evaluation of Fermi–Dirac-type integrals valid for any temperature. This article will illustrate a method for finding the quantum capacitance of monolayer graphene in the presence of electron–hole puddles for any Fermi level and for any temperature. The method employed is easily generalized to find the quantum capacitance of bilayer graphene as well as any other material when the density of states is a known function of energy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Selvaggi, J.P.: Exact analytical solution to the electron density for monolayer and bilayer graphene. J. Comput. Electron. 17(2), 491–498 (2018)CrossRef Selvaggi, J.P.: Exact analytical solution to the electron density for monolayer and bilayer graphene. J. Comput. Electron. 17(2), 491–498 (2018)CrossRef
2.
go back to reference Kliros, G.S.: A phenomenological model for the quantum capacitance of monolayer and bilayer graphene devices. Romanian J. Inf. Sci. Technol. 10(3), 332–341 (2010) Kliros, G.S.: A phenomenological model for the quantum capacitance of monolayer and bilayer graphene devices. Romanian J. Inf. Sci. Technol. 10(3), 332–341 (2010)
3.
go back to reference Aliofkhazraei, M., Nasar, A., Milne, W.I., Ozkan, C.S., Mitura, S., Gervasoni, J.L.: Graphene Science Handbook: Applications and Industrialization. CRC Press, New York (2016)CrossRef Aliofkhazraei, M., Nasar, A., Milne, W.I., Ozkan, C.S., Mitura, S., Gervasoni, J.L.: Graphene Science Handbook: Applications and Industrialization. CRC Press, New York (2016)CrossRef
4.
go back to reference Muccini, M.: A bright future for organic field-effect transistors. Nat. Mater. 5, 605–613 (2006)CrossRef Muccini, M.: A bright future for organic field-effect transistors. Nat. Mater. 5, 605–613 (2006)CrossRef
5.
go back to reference Malachowski, M.J., Żmija, J.: Organic field-effect transistors. Opto-Electron. Rev. 18(2), 121–136 (2010)CrossRef Malachowski, M.J., Żmija, J.: Organic field-effect transistors. Opto-Electron. Rev. 18(2), 121–136 (2010)CrossRef
6.
go back to reference C.J, Drury, Mutsaers, C.M.J., Hart, C.M., Matters, M., de Leeuw, D.M.: Low-cost all-polymer integrated circuits. Appl. Phys. Lett. 73, 108–110 (1998)CrossRef C.J, Drury, Mutsaers, C.M.J., Hart, C.M., Matters, M., de Leeuw, D.M.: Low-cost all-polymer integrated circuits. Appl. Phys. Lett. 73, 108–110 (1998)CrossRef
7.
go back to reference Borsenberger, P.M., Weiss, D.S.: Organic Photoreceptors for Xerography. Optical Engineering Series, vol. 49. Marcel Dekker, New York (1998) Borsenberger, P.M., Weiss, D.S.: Organic Photoreceptors for Xerography. Optical Engineering Series, vol. 49. Marcel Dekker, New York (1998)
8.
go back to reference Jia, C., Ma, W., Gu, C., Chen, H., Yu, H., Li, X., Zhang, F., Gu, L., Xia, A., Hou, X., Meng, S., Guo, X.: High-efficiency selective electron tunnelling in a heterostructure photovoltaic diode. Nano Lett. 16, 3600–3606 (2016)CrossRef Jia, C., Ma, W., Gu, C., Chen, H., Yu, H., Li, X., Zhang, F., Gu, L., Xia, A., Hou, X., Meng, S., Guo, X.: High-efficiency selective electron tunnelling in a heterostructure photovoltaic diode. Nano Lett. 16, 3600–3606 (2016)CrossRef
9.
go back to reference Zhang, Y., Dodson, K.H., Fischer, R., Wang, R., Li, D., Sappington, R.M., Xu, Y.Q.: Probing electrical signals in the retina via graphene-integrated microfluidic platforms. Nanoscale 8(45), 19043–19049 (2016)CrossRef Zhang, Y., Dodson, K.H., Fischer, R., Wang, R., Li, D., Sappington, R.M., Xu, Y.Q.: Probing electrical signals in the retina via graphene-integrated microfluidic platforms. Nanoscale 8(45), 19043–19049 (2016)CrossRef
10.
go back to reference Buckley, A.: Organic Light-Emitting Diodes (OLEDs): Materials, Devices and Applications. Woodhead Publishing Limited, Oxford (2013)CrossRef Buckley, A.: Organic Light-Emitting Diodes (OLEDs): Materials, Devices and Applications. Woodhead Publishing Limited, Oxford (2013)CrossRef
11.
go back to reference Han, T.H., Lee, Y., Choi, M.R., Woo, S.H., Bae, S.H., Hong, B.H., Ahn, J.H., Lee, T.W.: Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photon. 6, 105–110 (2012)CrossRef Han, T.H., Lee, Y., Choi, M.R., Woo, S.H., Bae, S.H., Hong, B.H., Ahn, J.H., Lee, T.W.: Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photon. 6, 105–110 (2012)CrossRef
12.
go back to reference Wu, T.L., Yeh, C.H., Hsiao, W.T., Huang, P.Y., Huang, M.J., Chiang, Y.H., Cheng, C.H., Liu, R.S., Chiu, P.W.: High-performance organic light-emitting diode with substitutionally boron-doped graphene anode. ACS Appl. Mater. Interfaces 9(17), 14998–15004 (2017)CrossRef Wu, T.L., Yeh, C.H., Hsiao, W.T., Huang, P.Y., Huang, M.J., Chiang, Y.H., Cheng, C.H., Liu, R.S., Chiu, P.W.: High-performance organic light-emitting diode with substitutionally boron-doped graphene anode. ACS Appl. Mater. Interfaces 9(17), 14998–15004 (2017)CrossRef
13.
go back to reference Li, S.S., Tu, K.H., Lin, C.C., Chen, C.W., Chhowalla, M.: Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4(6), 3169–3174 (2010)CrossRef Li, S.S., Tu, K.H., Lin, C.C., Chen, C.W., Chhowalla, M.: Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4(6), 3169–3174 (2010)CrossRef
14.
go back to reference Bassler, H.: Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys. Status Solidi B 175(1), 15–56 (1993)CrossRef Bassler, H.: Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys. Status Solidi B 175(1), 15–56 (1993)CrossRef
15.
go back to reference Lin, X.F., Zhang, Z.Y., Yuan, Z.K., Li, J., Xiao, X.F., Hong, W., Chen, X.D., Yu, D.S.: Graphene-based materials for polymer solar cells. Chin. Chem. Lett. 27(8), 1259–1270 (2016)CrossRef Lin, X.F., Zhang, Z.Y., Yuan, Z.K., Li, J., Xiao, X.F., Hong, W., Chen, X.D., Yu, D.S.: Graphene-based materials for polymer solar cells. Chin. Chem. Lett. 27(8), 1259–1270 (2016)CrossRef
16.
go back to reference Cody, W.J., Thacher, H.C.: Rational Chebyshev approximations for Fermi–Dirac integrals of orders \(-\)1/2, 1/2 and 3/2. Math. Comput. 21(97), 30–40 (1967)MATH Cody, W.J., Thacher, H.C.: Rational Chebyshev approximations for Fermi–Dirac integrals of orders \(-\)1/2, 1/2 and 3/2. Math. Comput. 21(97), 30–40 (1967)MATH
17.
go back to reference McDougall, J., Stoner, E.C.: The computation of Fermi–Dirac functions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 237(773), 67–104 (1938)CrossRefMATH McDougall, J., Stoner, E.C.: The computation of Fermi–Dirac functions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 237(773), 67–104 (1938)CrossRefMATH
18.
go back to reference Wong, S.A., McAlister, S.P., Li, Z.M.: A comparison of some approximations for the Fermi–Dirac integral of order. Solid-State Electron. 37(1), 61–64 (1994)CrossRef Wong, S.A., McAlister, S.P., Li, Z.M.: A comparison of some approximations for the Fermi–Dirac integral of order. Solid-State Electron. 37(1), 61–64 (1994)CrossRef
19.
go back to reference Rządkowski, G., Łepkowski, S.: A generalization of the Euler–Maclaurin summation formula: an application to numerical computation of the Fermi–Dirac integrals. J. Sci. Comput. 35, 63–74 (2008)MathSciNetCrossRefMATH Rządkowski, G., Łepkowski, S.: A generalization of the Euler–Maclaurin summation formula: an application to numerical computation of the Fermi–Dirac integrals. J. Sci. Comput. 35, 63–74 (2008)MathSciNetCrossRefMATH
20.
go back to reference Mohankumar, N., Kannan, T., Kanmani, S.: On the evaluation of Fermi–Dirac integral and its derivatives by IMT and DE quadrature methods. Comput. Phys. Commun. 168(2), 71–77 (2005)CrossRefMATH Mohankumar, N., Kannan, T., Kanmani, S.: On the evaluation of Fermi–Dirac integral and its derivatives by IMT and DE quadrature methods. Comput. Phys. Commun. 168(2), 71–77 (2005)CrossRefMATH
21.
go back to reference Kozhukhovskii, A.D., Simonzhenkov, S.D., Litvin, A.I.: Numerical Integration of Fermi–Dirac and Voigt functions. J. Math. Sci. 72(3), 3129–3132 (1994)CrossRef Kozhukhovskii, A.D., Simonzhenkov, S.D., Litvin, A.I.: Numerical Integration of Fermi–Dirac and Voigt functions. J. Math. Sci. 72(3), 3129–3132 (1994)CrossRef
22.
go back to reference Mohankumar, N., Natarajan, A.: On the very accurate numerical evaluation of the generalized Fermi–Dirac integrals. Comput. Phys. Commun. 207, 193–201 (2016)MathSciNetCrossRefMATH Mohankumar, N., Natarajan, A.: On the very accurate numerical evaluation of the generalized Fermi–Dirac integrals. Comput. Phys. Commun. 207, 193–201 (2016)MathSciNetCrossRefMATH
23.
go back to reference Fukushima, T.: Precise and fast computation of generalized Fermi–Dirac integral by parameter polynomial approximation. Appl. Math. Comput. 270, 802–807 (2015)MathSciNet Fukushima, T.: Precise and fast computation of generalized Fermi–Dirac integral by parameter polynomial approximation. Appl. Math. Comput. 270, 802–807 (2015)MathSciNet
24.
go back to reference Selvaggi, J.A., Selvaggi, J.P.: The analytical evaluation of the half-order Fermi–Dirac integrals. Open Math. J. 5, 1–7 (2012)MathSciNetCrossRef Selvaggi, J.A., Selvaggi, J.P.: The analytical evaluation of the half-order Fermi–Dirac integrals. Open Math. J. 5, 1–7 (2012)MathSciNetCrossRef
25.
go back to reference Selvaggi J.P., Selvaggi, J.A.: The application of real convolution for analytically evaluating Fermi–Dirac-type and Bose–Einstein-type integrals. J. Complex Anal. 2018, Article ID 5941485, 1–8 (2018) Selvaggi J.P., Selvaggi, J.A.: The application of real convolution for analytically evaluating Fermi–Dirac-type and Bose–Einstein-type integrals. J. Complex Anal. 2018, Article ID 5941485, 1–8 (2018)
26.
go back to reference Selvaggi, J.P.: Analytical evaluation of the charge carrier density of organic materials with a Gaussian density of states revisited. J. Comput. Electron. 17(1), 61–67 (2018)CrossRef Selvaggi, J.P.: Analytical evaluation of the charge carrier density of organic materials with a Gaussian density of states revisited. J. Comput. Electron. 17(1), 61–67 (2018)CrossRef
27.
go back to reference Mehmetoğlu, T.: Analytical evaluation of charge carrier density of organic materials with Gauss density of states. J. Comput. Electron. 13(4), 960–964 (2014)CrossRef Mehmetoğlu, T.: Analytical evaluation of charge carrier density of organic materials with Gauss density of states. J. Comput. Electron. 13(4), 960–964 (2014)CrossRef
28.
go back to reference Paasch, G., Scheinert, S.: Charge carrier density of organics with Gaussian density of states: analytical approximation for the Gauss–Fermi integral. J. Appl. Phys. 107(10), 104501-1–104501-4 (2010)CrossRef Paasch, G., Scheinert, S.: Charge carrier density of organics with Gaussian density of states: analytical approximation for the Gauss–Fermi integral. J. Appl. Phys. 107(10), 104501-1–104501-4 (2010)CrossRef
29.
go back to reference Nawaz, S., Tahir, M.: Quantum capacitance in monolayers of silicene and related buckled materials. Physica E 76, 169–172 (2016)CrossRef Nawaz, S., Tahir, M.: Quantum capacitance in monolayers of silicene and related buckled materials. Physica E 76, 169–172 (2016)CrossRef
30.
go back to reference Bisquert, J.: Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distribution of states. Phys. Chem. Chem. Phys. 10(22), 3175–3194 (2008)CrossRef Bisquert, J.: Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distribution of states. Phys. Chem. Chem. Phys. 10(22), 3175–3194 (2008)CrossRef
31.
go back to reference Tahir, M., Schwingenschlögl, U.: Beating of magnetic oscillations in graphene device probed by quantum capacitance. Appl. Phys. Lett. 101(1), 013114-1–013114-3 (2012)CrossRef Tahir, M., Schwingenschlögl, U.: Beating of magnetic oscillations in graphene device probed by quantum capacitance. Appl. Phys. Lett. 101(1), 013114-1–013114-3 (2012)CrossRef
32.
go back to reference Tahir, M., Sabeeh, K., Shaukat, A., Schwingenschlögl, U.: Theory of substrate, Zeeman, and electron-phonon interaction effects on the quantum capacitance in graphene. J. Appl. Phys. 114(22), 223711-1–223711-6 (2013)CrossRef Tahir, M., Sabeeh, K., Shaukat, A., Schwingenschlögl, U.: Theory of substrate, Zeeman, and electron-phonon interaction effects on the quantum capacitance in graphene. J. Appl. Phys. 114(22), 223711-1–223711-6 (2013)CrossRef
33.
go back to reference Santiago, F.F., Seró, I.M., Belmonte, G., Bisquert, J.: Cyclic voltammetry studies of nanoporous semiconductors, capacitive and reactive properties of nanocrystalline \(\text{ TiO }_{2}\), electrodes in aqueous electrolyte. J. Phys. Chem. B 107(3), 758–768 (2003)CrossRef Santiago, F.F., Seró, I.M., Belmonte, G., Bisquert, J.: Cyclic voltammetry studies of nanoporous semiconductors, capacitive and reactive properties of nanocrystalline \(\text{ TiO }_{2}\), electrodes in aqueous electrolyte. J. Phys. Chem. B 107(3), 758–768 (2003)CrossRef
34.
go back to reference Kliros, G.S.: Quantum capacitance of bilayer graphene. CAS Proc. Int. Semicond. Conf. 1, 69–72 (2010) Kliros, G.S.: Quantum capacitance of bilayer graphene. CAS Proc. Int. Semicond. Conf. 1, 69–72 (2010)
35.
go back to reference Kliros, G.S.: Influence of density inhomogeneity on the quantum capacitance of graphene nanoribbon field effect transistors. Superlattices Microstruct. 52(6), 1093–1102 (2012)CrossRef Kliros, G.S.: Influence of density inhomogeneity on the quantum capacitance of graphene nanoribbon field effect transistors. Superlattices Microstruct. 52(6), 1093–1102 (2012)CrossRef
36.
go back to reference Li, Q., Hwang, E.H., Das Sarma, S.: Disorder-induced temperature-dependent transport in graphene: puddles, impurities, activation, and diffusion. Phys. Rev. B 84, 115442-1–115442-16 (2011) Li, Q., Hwang, E.H., Das Sarma, S.: Disorder-induced temperature-dependent transport in graphene: puddles, impurities, activation, and diffusion. Phys. Rev. B 84, 115442-1–115442-16 (2011)
37.
go back to reference Wang, L., Wang, W., Xu, G., Ji, Z., Lu, N., Li, L., Liu, M.: Analytical carrier density and quantum capacitance for graphene. Appl. Phys. Lett. 108(1), 013503-1–013503-5 (2016) Wang, L., Wang, W., Xu, G., Ji, Z., Lu, N., Li, L., Liu, M.: Analytical carrier density and quantum capacitance for graphene. Appl. Phys. Lett. 108(1), 013503-1–013503-5 (2016)
38.
go back to reference Cheremisin, M.V.: Quantum capacitance of the monolayer graphene. Physica E 69, 153–158 (2015)CrossRef Cheremisin, M.V.: Quantum capacitance of the monolayer graphene. Physica E 69, 153–158 (2015)CrossRef
39.
go back to reference Fang, T., Konar, A., Xing, H., Jena, D.: Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91(9), 092109-1–092109-3 (2007)CrossRef Fang, T., Konar, A., Xing, H., Jena, D.: Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91(9), 092109-1–092109-3 (2007)CrossRef
40.
go back to reference Wolfram Research, Inc., MATHEMATICA, version 11.2, Wolfram Research, Inc., Champaign, Illinois (2017) Wolfram Research, Inc., MATHEMATICA, version 11.2, Wolfram Research, Inc., Champaign, Illinois (2017)
Metadata
Title
A general analytical method for finding the quantum capacitance of graphene
Author
Jerry P. Selvaggi
Publication date
20-06-2018
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2018
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1202-0

Other articles of this Issue 3/2018

Journal of Computational Electronics 3/2018 Go to the issue