Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2020

21-10-2020

Thermoelectric properties of PbTe-based graphene nanocomposite

Authors: Kaleem Ahmad, Zeyad Almutairi, Chunlei Wan

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

PbTe is a classic thermoelectric being used commercially in interplanetary and deep space missions due its high reliability and availability for power generation, however, the low efficiency limits its broader applications. The advancement in nanostructured powder processing with low-dimensional constituents has evolved as an effective strategy for the development of high-performance materials. In this work, coarse PbTe was transformed into nanostructured material through ball milling in an inert environment. Subsequently, 1 vol% graphene was uniformly dispersed in PbTe fine powder in order to translate the favorable properties of 2D sheets to the bulk matrix. The coarse PbTe and nanostructured PbTe/graphene composite powders were consolidated by the high-frequency induction heated sintering. The temperature-dependent thermoelectric properties of the bulk samples were evaluated. The electronic transport of pure PbTe demonstrated semi-metallic conducting behavior and the composite with 1 vol% of graphene indicated somehow semiconducting trend. The Seebeck coefficient changed from positive for PbTe to negative for PbTe/graphene composite thus exhibiting transformation of majority carriers. The power factor of the composite dominated by the electrical conductivity increased at higher temperature ~ 490K from pristine PbTe. The thermal conductivity of the composite decreased substantially over the entire temperature range suggesting multiscale phonon scattering. Consequently, reduction in thermal conductivity synchronized with increase in power factor leads to enhancement of thermoelectric figure of merit of the composite above ~ 490K from pristine PbTe.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T.-R. Wei, C.-F. Wu, F. Li, J.-F. Li, Low-cost and environmentally benign selenides as promising thermoelectric materials. J. Materiomics 4, 304–320 (2018)CrossRef T.-R. Wei, C.-F. Wu, F. Li, J.-F. Li, Low-cost and environmentally benign selenides as promising thermoelectric materials. J. Materiomics 4, 304–320 (2018)CrossRef
2.
go back to reference R. Freer, A.V. Powell, Realising the potential of thermoelectric technology: A roadmap. Journal of Materials Chemistry C 8, 441–463 (2020)CrossRef R. Freer, A.V. Powell, Realising the potential of thermoelectric technology: A roadmap. Journal of Materials Chemistry C 8, 441–463 (2020)CrossRef
3.
go back to reference C.-H. Su, Design, growth and characterization of pbte-based thermoelectric materials. Prog. Cryst. Growth Charact. Mater. 65, 47–94 (2019)CrossRef C.-H. Su, Design, growth and characterization of pbte-based thermoelectric materials. Prog. Cryst. Growth Charact. Mater. 65, 47–94 (2019)CrossRef
4.
go back to reference Q. Zhang, Q. Song, X. Wang, J. Sun, Q. Zhu, K. Dahal, X. Lin, F. Cao, J. Zhou, S. Chen et al., Deep defect level engineering: A strategy of optimizing the carrier concentration for high thermoelectric performance. Energy Environ. Sci. 11, 933–940 (2018)CrossRef Q. Zhang, Q. Song, X. Wang, J. Sun, Q. Zhu, K. Dahal, X. Lin, F. Cao, J. Zhou, S. Chen et al., Deep defect level engineering: A strategy of optimizing the carrier concentration for high thermoelectric performance. Energy Environ. Sci. 11, 933–940 (2018)CrossRef
5.
go back to reference J. Zhang, L. Song, S.H. Pedersen, H. Yin, L.T. Hung, B.B. Iversen, Discovery of high-performance low-cost n-type mg3sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 8, 13901 (2017)CrossRef J. Zhang, L. Song, S.H. Pedersen, H. Yin, L.T. Hung, B.B. Iversen, Discovery of high-performance low-cost n-type mg3sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 8, 13901 (2017)CrossRef
6.
go back to reference Y. Pei, G. Tan, D. Feng, L. Zheng, Q. Tan, X. Xie, S. Gong, Y. Chen, J.-F. Li, J. He et al., Integrating band structure engineering with all-scale hierarchical structuring for high thermoelectric performance in pbte system. Advanced Energy Materials 7, 1601450 (2017)CrossRef Y. Pei, G. Tan, D. Feng, L. Zheng, Q. Tan, X. Xie, S. Gong, Y. Chen, J.-F. Li, J. He et al., Integrating band structure engineering with all-scale hierarchical structuring for high thermoelectric performance in pbte system. Advanced Energy Materials 7, 1601450 (2017)CrossRef
7.
go back to reference A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009)CrossRef A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009)CrossRef
8.
go back to reference B. Khasimsaheb, N.K. Singh, S. Bathula, B. Gahtori, D. Haranath, S. Neeleshwar, The effect of carbon nanotubes (cnt) on thermoelectric properties of lead telluride (pbte) nanocubes. Curr. Appl. Phys. 17, 306–313 (2017)CrossRef B. Khasimsaheb, N.K. Singh, S. Bathula, B. Gahtori, D. Haranath, S. Neeleshwar, The effect of carbon nanotubes (cnt) on thermoelectric properties of lead telluride (pbte) nanocubes. Curr. Appl. Phys. 17, 306–313 (2017)CrossRef
9.
go back to reference Z.-Y. Li, J.-F. Li, W.-Y. Zhao, Q. Tan, T.-R. Wei, C.-F. Wu, Z.-B. Xing, Pbte-based thermoelectric nanocomposites with reduced thermal conductivity by sic nanodispersion. Appl. Phys. Lett. 104, 113905 (2014)CrossRef Z.-Y. Li, J.-F. Li, W.-Y. Zhao, Q. Tan, T.-R. Wei, C.-F. Wu, Z.-B. Xing, Pbte-based thermoelectric nanocomposites with reduced thermal conductivity by sic nanodispersion. Appl. Phys. Lett. 104, 113905 (2014)CrossRef
10.
go back to reference J. Dong, W. Liu, H. Li, X. Su, X. Tang, C. Uher, In situ synthesis and thermoelectric properties of pbte-graphene nanocomposites by utilizing a facile and novel wet chemical method. Journal of Materials Chemistry A 1, 12503–12511 (2013)CrossRef J. Dong, W. Liu, H. Li, X. Su, X. Tang, C. Uher, In situ synthesis and thermoelectric properties of pbte-graphene nanocomposites by utilizing a facile and novel wet chemical method. Journal of Materials Chemistry A 1, 12503–12511 (2013)CrossRef
11.
go back to reference X. Ai, D. Hou, X. Liu, S. Gu, L. Wang, W. Jiang, Enhanced thermoelectric performance of pbte-based nanocomposites through element doping and sic nanoparticles dispersion. Scr. Mater. 179, 86–91 (2020)CrossRef X. Ai, D. Hou, X. Liu, S. Gu, L. Wang, W. Jiang, Enhanced thermoelectric performance of pbte-based nanocomposites through element doping and sic nanoparticles dispersion. Scr. Mater. 179, 86–91 (2020)CrossRef
12.
go back to reference H. He, W. Qiu, Z. Wang, X. Cui, Y. Zhang, Z. Wang, L. Chen, H. Deng, Y. Sun, L. Zhao et al., Enhanced thermoelectric performance of n-type pbte through the introduction of low-dimensional c60 nanodots. J. Alloys Compd. 823, 153863 (2020)CrossRef H. He, W. Qiu, Z. Wang, X. Cui, Y. Zhang, Z. Wang, L. Chen, H. Deng, Y. Sun, L. Zhao et al., Enhanced thermoelectric performance of n-type pbte through the introduction of low-dimensional c60 nanodots. J. Alloys Compd. 823, 153863 (2020)CrossRef
13.
go back to reference Q. Guo, R. Ghadiri, T. Weigel, A. Aumann, E. Gurevich, C. Esen, O. Medenbach, W. Cheng, B. Chichkov, A. Ostendorf, Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers 6, 2037–2050 (2014)CrossRef Q. Guo, R. Ghadiri, T. Weigel, A. Aumann, E. Gurevich, C. Esen, O. Medenbach, W. Cheng, B. Chichkov, A. Ostendorf, Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers 6, 2037–2050 (2014)CrossRef
14.
go back to reference K. Ahmad, C. Wan, M.A. Al-Eshaikh, Effect of uniform dispersion of single-wall carbon nanotubes on the thermoelectric properties of bisbte-based nanocomposites. J. Electron. Mater. 46, 1348–1357 (2017)CrossRef K. Ahmad, C. Wan, M.A. Al-Eshaikh, Effect of uniform dispersion of single-wall carbon nanotubes on the thermoelectric properties of bisbte-based nanocomposites. J. Electron. Mater. 46, 1348–1357 (2017)CrossRef
15.
go back to reference K. Ahmad, C. Wan, M.A. Al-Eshaikh, A.N. Kadachi, Reduction in thermal conductivity of bisbte lump. Appl. Phys. A 123, 173 (2017)CrossRef K. Ahmad, C. Wan, M.A. Al-Eshaikh, A.N. Kadachi, Reduction in thermal conductivity of bisbte lump. Appl. Phys. A 123, 173 (2017)CrossRef
16.
go back to reference K. Ahmad, C. Wan, M.A. Al-Eshaikh, A.N. Kadachi, Enhanced thermoelectric performance of bi2te3 based graphene nanocomposites. Appl. Surf. Sci. 474, 2–8 (2019)CrossRef K. Ahmad, C. Wan, M.A. Al-Eshaikh, A.N. Kadachi, Enhanced thermoelectric performance of bi2te3 based graphene nanocomposites. Appl. Surf. Sci. 474, 2–8 (2019)CrossRef
17.
go back to reference A. Kaleem, W. Chunlei, Enhanced thermoelectric performance of bi 2 te 3 through uniform dispersion of single wall carbon nanotubes. Nanotechnology 28, 415402 (2017)CrossRef A. Kaleem, W. Chunlei, Enhanced thermoelectric performance of bi 2 te 3 through uniform dispersion of single wall carbon nanotubes. Nanotechnology 28, 415402 (2017)CrossRef
18.
go back to reference K. Ahmad, W. Pan, H. Wu, High performance alumina based graphene nanocomposites with novel electrical and dielectric properties. RSC Advances 5, 33607–33614 (2015)CrossRef K. Ahmad, W. Pan, H. Wu, High performance alumina based graphene nanocomposites with novel electrical and dielectric properties. RSC Advances 5, 33607–33614 (2015)CrossRef
19.
go back to reference G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)CrossRef G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)CrossRef
20.
go back to reference H. Xian, T. Peng, H. Sun, J. Wang, Preparation of graphene nanosheets from microcrystalline graphite by low-temperature exfoliated method and their supercapacitive behavior. Journal of Materials Science 50, 4025–4033 (2015)CrossRef H. Xian, T. Peng, H. Sun, J. Wang, Preparation of graphene nanosheets from microcrystalline graphite by low-temperature exfoliated method and their supercapacitive behavior. Journal of Materials Science 50, 4025–4033 (2015)CrossRef
21.
go back to reference H. Ju, J. Kim, The effect of temperature on thermoelectric properties of n-type bi2te3 nanowire/graphene layer-by-layer hybrid composites. Dalton Trans. 44, 11755–11762 (2015)CrossRef H. Ju, J. Kim, The effect of temperature on thermoelectric properties of n-type bi2te3 nanowire/graphene layer-by-layer hybrid composites. Dalton Trans. 44, 11755–11762 (2015)CrossRef
22.
go back to reference C. Papageorgiou, E. Hatzikraniotis, C. Lioutas, N. Frangis, O. Valassiades, K. Paraskevopoulos, T. Kyratsi, Thermoelectric properties of nanocrystalline pbte synthesized by mechanical alloying. J. Electron. Mater. 39, 1665–1668 (2012)CrossRef C. Papageorgiou, E. Hatzikraniotis, C. Lioutas, N. Frangis, O. Valassiades, K. Paraskevopoulos, T. Kyratsi, Thermoelectric properties of nanocrystalline pbte synthesized by mechanical alloying. J. Electron. Mater. 39, 1665–1668 (2012)CrossRef
23.
go back to reference M. Zhang, S.-D. Park, J. Kim, M. Nalbandian, S. Kim, Y. Choa, J. Lim, N.V. Myung Synthesis and thermoelectric characterization of lead telluride hollow nanofibers. Frontiers in Chemistry 2018, 6 M. Zhang, S.-D. Park, J. Kim, M. Nalbandian, S. Kim, Y. Choa, J. Lim, N.V. Myung Synthesis and thermoelectric characterization of lead telluride hollow nanofibers. Frontiers in Chemistry 2018, 6
24.
go back to reference S.W. Finefrock, G. Zhang, J.-H. Bahk, H. Fang, H. Yang, A. Shakouri, Y. Wu, Structure and thermoelectric properties of spark plasma sintered ultrathin pbte nanowires. Nano Lett. 14, 3466–3473 (2014)CrossRef S.W. Finefrock, G. Zhang, J.-H. Bahk, H. Fang, H. Yang, A. Shakouri, Y. Wu, Structure and thermoelectric properties of spark plasma sintered ultrathin pbte nanowires. Nano Lett. 14, 3466–3473 (2014)CrossRef
25.
go back to reference K. Ahmad, C. Wan, P. Zong, Thermoelectric properties of bisbte/graphene nanocomposites. J. Mater. Sci.: Mater. Electron. 30, 11923–11930 (2019) K. Ahmad, C. Wan, P. Zong, Thermoelectric properties of bisbte/graphene nanocomposites. J. Mater. Sci.: Mater. Electron. 30, 11923–11930 (2019)
26.
go back to reference Y. Du, J. Li, J. Xu, P. Eklund, Thermoelectric properties of reduced graphene oxide/bi2te3 nanocomposites. Energies 12, 2430 (2019)CrossRef Y. Du, J. Li, J. Xu, P. Eklund, Thermoelectric properties of reduced graphene oxide/bi2te3 nanocomposites. Energies 12, 2430 (2019)CrossRef
27.
go back to reference L. Fu, M. Yin, D. Wu, W. Li, D. Feng, L. Huang, J. He, Large enhancement of thermoelectric properties in n-type pbte via dual-site point defects. Energy Environ. Sci. 10, 2030–2040 (2017)CrossRef L. Fu, M. Yin, D. Wu, W. Li, D. Feng, L. Huang, J. He, Large enhancement of thermoelectric properties in n-type pbte via dual-site point defects. Energy Environ. Sci. 10, 2030–2040 (2017)CrossRef
28.
go back to reference Y. Li, D. Mei, H. Wang, Z. Yao, T. Zhu, S. Chen, Reduced lattice thermal conductivity in nanograined na-doped pbte alloys by ball milling and semisolid powder processing. Mater. Lett. 140, 103–106 (2015)CrossRef Y. Li, D. Mei, H. Wang, Z. Yao, T. Zhu, S. Chen, Reduced lattice thermal conductivity in nanograined na-doped pbte alloys by ball milling and semisolid powder processing. Mater. Lett. 140, 103–106 (2015)CrossRef
29.
go back to reference S.N. Girard, J. He, X. Zhou, D. Shoemaker, C.M. Jaworski, C. Uher, V.P. Dravid, J.P. Heremans, M.G. Kanatzidis, High performance na-doped pbte–pbs thermoelectric materials: Electronic density of states modification and shape-controlled nanostructures. J. Am. Chem. Soc. 133, 16588–16597 (2011)CrossRef S.N. Girard, J. He, X. Zhou, D. Shoemaker, C.M. Jaworski, C. Uher, V.P. Dravid, J.P. Heremans, M.G. Kanatzidis, High performance na-doped pbte–pbs thermoelectric materials: Electronic density of states modification and shape-controlled nanostructures. J. Am. Chem. Soc. 133, 16588–16597 (2011)CrossRef
30.
go back to reference H. Fang, T. Feng, H. Yang, X. Ruan, Y. Wu, Synthesis and thermoelectric properties of compositional-modulated lead telluride–bismuth telluride nanowire heterostructures. Nano Lett. 13, 2058–2063 (2013)CrossRef H. Fang, T. Feng, H. Yang, X. Ruan, Y. Wu, Synthesis and thermoelectric properties of compositional-modulated lead telluride–bismuth telluride nanowire heterostructures. Nano Lett. 13, 2058–2063 (2013)CrossRef
31.
go back to reference M.H. Lee, J.-S. Rhyee, Thermoelectric properties of p-type pbte/ag2te bulk composites by extrinsic phase mixing. AIP Adv. 5, 127223 (2015)CrossRef M.H. Lee, J.-S. Rhyee, Thermoelectric properties of p-type pbte/ag2te bulk composites by extrinsic phase mixing. AIP Adv. 5, 127223 (2015)CrossRef
Metadata
Title
Thermoelectric properties of PbTe-based graphene nanocomposite
Authors
Kaleem Ahmad
Zeyad Almutairi
Chunlei Wan
Publication date
21-10-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04613-y

Other articles of this Issue 23/2020

Journal of Materials Science: Materials in Electronics 23/2020 Go to the issue