Skip to main content
Top
Published in: Journal of Materials Science 7/2017

10-01-2017 | Batteries and Supercapacitors

Thermophysical and transport properties of blends of an ether-derivatized imidazolium ionic liquid and a Li+-based solvate ionic liquid

Authors: Yanni Wang, Michael C. Turk, Malavarayan Sankarasubramanian, Anirudh Srivatsa, Dipankar Roy, Sitaraman Krishnan

Published in: Journal of Materials Science | Issue 7/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ‘solvate’ ionic liquid (IL), comprising of a 1:1 complex of lithium bis(trifluoromethanesulfonyl)amide (LiTf2N) and tetraglyme (G4), denoted herein by [Li(G4)][Tf2N], is promising as a relatively nonvolatile, nonflammable, and safer electrolyte for lithium-ion batteries. It, however, suffers from the drawback of low ionic conductivity compared with the conventional organic carbonate electrolytes. We report herein the enhancement in the thermal and transport properties of [Li(G4)][Tf2N] by blending it with an ether-derivatized imidazolium IL, namely 1-(2-methoxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)amide, [mEtMeIm][Tf2N]. The volumetric and transport properties of [mEtMeIm][Tf2N], and its blends with [Li(G4)][Tf2N], were investigated at temperatures in the range of 10–85 °C using oscillating U-tube densitometry, cone and plate viscometry, and electrochemical impedance spectroscopy. The addition of [mEtMeIm][Tf2N] to [Li(G4)][Tf2N] lowered the viscosity and increased the ionic conductivity of the blends. The blends also exhibited improved thermal stability in thermogravimetry experiments. Notwithstanding the complex intermolecular interactions existing in the mixture of the [mEtMeIm][Tf2N], LiTf2N, and G4, the density, viscosity, and conductivity data could be modeled assuming the blend to be a simple binary mixture of [Li(G4)][Tf2N] and [mEtMeIm][Tf2N], instead of a ternary mixture of [mEtMeIm][Tf2N], LiTf2N, and G4. The addition of unchelated LiTf2N to [mEtMeIm][Tf2N] resulted in a decrease in ionic conductivity at all temperatures of measurement. However, when LiTf2N was added as a 1:1 complex with G4, the conductivity was higher, at the same molar concentration of LiTf2N. The implications of these results are discussed in view of developing thermally and chemically stable IL-based electrolytes for Li ion batteries, especially for operation at elevated temperatures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
3.
go back to reference Rock SE, Wu L, Crain DJ, Krishnan S, Roy D (2013) Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4. ACS Appl Mater Interfaces 5:2075–2084. doi:10.1021/am302921r CrossRef Rock SE, Wu L, Crain DJ, Krishnan S, Roy D (2013) Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4. ACS Appl Mater Interfaces 5:2075–2084. doi:10.​1021/​am302921r CrossRef
6.
go back to reference Bhatt MD, O’Dwyer C (2015) Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys 17:4799–4844. doi:10.1039/C4CP05552G CrossRef Bhatt MD, O’Dwyer C (2015) Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys 17:4799–4844. doi:10.​1039/​C4CP05552G CrossRef
11.
go back to reference Moosbauer D, Zugmann S, Amereller M, Gores HJ (2010) Effect of ionic liquids as additives on lithium electrolytes: conductivity, electrochemical stability, and aluminum corrosion. J Chem Eng Data 55:1794–1798. doi:10.1021/je900867m CrossRef Moosbauer D, Zugmann S, Amereller M, Gores HJ (2010) Effect of ionic liquids as additives on lithium electrolytes: conductivity, electrochemical stability, and aluminum corrosion. J Chem Eng Data 55:1794–1798. doi:10.​1021/​je900867m CrossRef
13.
go back to reference McIntosh LD, Kubo T, Lodge TP (2014) Morphology, modulus, and conductivity of a triblock terpolymer/ionic liquid electrolyte membrane. Macromolecules 47:1090–1098. doi:10.1021/ma4022373 CrossRef McIntosh LD, Kubo T, Lodge TP (2014) Morphology, modulus, and conductivity of a triblock terpolymer/ionic liquid electrolyte membrane. Macromolecules 47:1090–1098. doi:10.​1021/​ma4022373 CrossRef
15.
go back to reference Ueno K, Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2012) Glyme–lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? J Phys Chem B 116:11323–11331. doi:10.1021/jp307378j CrossRef Ueno K, Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2012) Glyme–lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? J Phys Chem B 116:11323–11331. doi:10.​1021/​jp307378j CrossRef
17.
go back to reference Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2011) Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis(trifluoromethanesulfonyl)amide and glymes. J Phys Chem C 115:18384–18394. doi:10.1021/jp206881t CrossRef Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2011) Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis(trifluoromethanesulfonyl)amide and glymes. J Phys Chem C 115:18384–18394. doi:10.​1021/​jp206881t CrossRef
18.
go back to reference Zhang C, Ueno K, Yamazaki A, Yoshida K, Moon H, Mandai T, Umebayashi Y, Dokko K, Watanabe M (2014) Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl) amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. J Phys Chem B 118:5144–5153. doi:10.1021/jp501319e CrossRef Zhang C, Ueno K, Yamazaki A, Yoshida K, Moon H, Mandai T, Umebayashi Y, Dokko K, Watanabe M (2014) Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl) amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. J Phys Chem B 118:5144–5153. doi:10.​1021/​jp501319e CrossRef
19.
go back to reference Tsuzuki S, Shinoda W, Matsugami M, Umebayashi Y, Ueno K, Mandai T, Seki S, Dokko K, Watanabe M (2015) Structures of [Li(glyme)]+ complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations. Phys Chem Chem Phys 17:126–129. doi:10.1039/C4CP04718D CrossRef Tsuzuki S, Shinoda W, Matsugami M, Umebayashi Y, Ueno K, Mandai T, Seki S, Dokko K, Watanabe M (2015) Structures of [Li(glyme)]+ complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations. Phys Chem Chem Phys 17:126–129. doi:10.​1039/​C4CP04718D CrossRef
20.
go back to reference Zhang C, Yamazaki A, Murai J, Park J-W, Mandai T, Ueno K, Dokko K, Watanabe M (2014) Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids, Part 2: importance of solvate-structure stability for electrolytes of lithium batteries. J Phys Chem C 118:17362–17373. doi:10.1021/jp504099q CrossRef Zhang C, Yamazaki A, Murai J, Park J-W, Mandai T, Ueno K, Dokko K, Watanabe M (2014) Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids, Part 2: importance of solvate-structure stability for electrolytes of lithium batteries. J Phys Chem C 118:17362–17373. doi:10.​1021/​jp504099q CrossRef
21.
go back to reference Freemantle M (2010) An introduction to ionic liquids. RSC Publishing, Cambridge Freemantle M (2010) An introduction to ionic liquids. RSC Publishing, Cambridge
23.
go back to reference Umecky T, Suga K, Masaki E, Takamuku T, Makino T, Kanakubo M (2015) Solvation structure and dynamics of Li+ in Lewis-basic ionic liquid of 1-octyl-4-aza-1-azoniabicyclo[2.2.2]octane bis(trifluoromethanesulfonyl)amide. J Mol Liq 209:557–562. doi:10.1016/j.molliq.2015.06.006 CrossRef Umecky T, Suga K, Masaki E, Takamuku T, Makino T, Kanakubo M (2015) Solvation structure and dynamics of Li+ in Lewis-basic ionic liquid of 1-octyl-4-aza-1-azoniabicyclo[2.2.2]octane bis(trifluoromethanesulfonyl)amide. J Mol Liq 209:557–562. doi:10.​1016/​j.​molliq.​2015.​06.​006 CrossRef
25.
go back to reference Angenendt K, Johansson P (2011) Ionic liquid based lithium battery electrolytes: charge carriers and interactions derived by density functional theory calculations. J Phys Chem B 115:7808–7813. doi:10.1021/jp2036108 CrossRef Angenendt K, Johansson P (2011) Ionic liquid based lithium battery electrolytes: charge carriers and interactions derived by density functional theory calculations. J Phys Chem B 115:7808–7813. doi:10.​1021/​jp2036108 CrossRef
26.
go back to reference Lassegues J-C, Grondin J, Talaga D (2006) Lithium solvation in bis(trifluoromethanesulfonyl)imide-based ionic liquids. Phys Chem Chem Phys 8:5629–5632. doi:10.1039/B615127B CrossRef Lassegues J-C, Grondin J, Talaga D (2006) Lithium solvation in bis(trifluoromethanesulfonyl)imide-based ionic liquids. Phys Chem Chem Phys 8:5629–5632. doi:10.​1039/​B615127B CrossRef
27.
go back to reference Johansson P, Gejji SP, Tegenfeldt J, Lindgren J (1996) Local coordination and conformation in polyether electrolytes: geometries of M-triglyme complexes (M = Li, Na, K, Mg and Ca) from ab initio molecular orbital calculations. Solid State Ionics 86:297–302. doi:10.1016/0167-2738(96)00129-4 CrossRef Johansson P, Gejji SP, Tegenfeldt J, Lindgren J (1996) Local coordination and conformation in polyether electrolytes: geometries of M-triglyme complexes (M = Li, Na, K, Mg and Ca) from ab initio molecular orbital calculations. Solid State Ionics 86:297–302. doi:10.​1016/​0167-2738(96)00129-4 CrossRef
28.
go back to reference Johansson P, Tegenfeldt J, Lindgren J (1999) Modelling amorphous lithium salt–PEO polymer electrolytes: ab initio calculations of lithium ion–tetra-, penta- and hexaglyme complexes. Polymer 40:4399–4406. doi:10.1016/S0032-3861(98)00676-4 CrossRef Johansson P, Tegenfeldt J, Lindgren J (1999) Modelling amorphous lithium salt–PEO polymer electrolytes: ab initio calculations of lithium ion–tetra-, penta- and hexaglyme complexes. Polymer 40:4399–4406. doi:10.​1016/​S0032-3861(98)00676-4 CrossRef
30.
go back to reference Pappenfus TM, Henderson WA, Owens BB, Mann KR, Smyrl WH (2004) Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials. J Electrochem Soc 151:A209–A215. doi:10.1149/1.1635384 CrossRef Pappenfus TM, Henderson WA, Owens BB, Mann KR, Smyrl WH (2004) Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials. J Electrochem Soc 151:A209–A215. doi:10.​1149/​1.​1635384 CrossRef
32.
go back to reference Kashyap HK, Hettige JJ, Annapureddy HVR, Margulis CJ (2012) SAXS anti-peaks reveal the length-scales of dual positive–negative and polar–apolar ordering in room-temperature ionic liquids. Chem Commun 48:5103–5105. doi:10.1039/C2CC30609C CrossRef Kashyap HK, Hettige JJ, Annapureddy HVR, Margulis CJ (2012) SAXS anti-peaks reveal the length-scales of dual positive–negative and polar–apolar ordering in room-temperature ionic liquids. Chem Commun 48:5103–5105. doi:10.​1039/​C2CC30609C CrossRef
33.
go back to reference Ueno K, Tatara R, Tsuzuki S, Saito S, Doi H, Yoshida K, Mandai T, Matsugami M, Umebayashi Y, Dokko K, Watanabe M (2015) Li+ solvation in glyme-Li salt solvate ionic liquids. Phys Chem Chem Phys 17:8248–8257. doi:10.1039/C4CP05943C CrossRef Ueno K, Tatara R, Tsuzuki S, Saito S, Doi H, Yoshida K, Mandai T, Matsugami M, Umebayashi Y, Dokko K, Watanabe M (2015) Li+ solvation in glyme-Li salt solvate ionic liquids. Phys Chem Chem Phys 17:8248–8257. doi:10.​1039/​C4CP05943C CrossRef
34.
go back to reference Nicolau BG, Sturlaugson A, Fruchey K, Ribeiro MCC, Fayer MD (2010) Room temperature ionic liquid–lithium salt mixtures: optical Kerr effect dynamical measurements. J Phys Chem B 114:8350–8356. doi:10.1021/jp103810r CrossRef Nicolau BG, Sturlaugson A, Fruchey K, Ribeiro MCC, Fayer MD (2010) Room temperature ionic liquid–lithium salt mixtures: optical Kerr effect dynamical measurements. J Phys Chem B 114:8350–8356. doi:10.​1021/​jp103810r CrossRef
35.
36.
37.
go back to reference Ganapatibhotla LVNR, Zheng J, Roy D, Krishnan S (2010) PEGylated imidazolium ionic liquid electrolytes: thermophysical and electrochemical properties. Chem Mater 22:6347–6360. doi:10.1021/cm102263s CrossRef Ganapatibhotla LVNR, Zheng J, Roy D, Krishnan S (2010) PEGylated imidazolium ionic liquid electrolytes: thermophysical and electrochemical properties. Chem Mater 22:6347–6360. doi:10.​1021/​cm102263s CrossRef
39.
go back to reference Wei YY, Tinant B, Declercq J-P, Van Meerssche M, Dale J (1988) Crown ether complexes of alkaline-earth metal ions. I. Structures of 1,4,7,10-tetraoxacyclododecane (12-crown-4) complexed with calcium, strontium and barium thiocyanates. Acta Crystallogr Sect C 44:68–73. doi:10.1107/S0108270187009090 CrossRef Wei YY, Tinant B, Declercq J-P, Van Meerssche M, Dale J (1988) Crown ether complexes of alkaline-earth metal ions. I. Structures of 1,4,7,10-tetraoxacyclododecane (12-crown-4) complexed with calcium, strontium and barium thiocyanates. Acta Crystallogr Sect C 44:68–73. doi:10.​1107/​S010827018700909​0 CrossRef
40.
go back to reference Wei YY, Tinant B, Declercq J-P, Van Meerssche M, Dale J (1988) Crown ether complexes of alkaline-earth metal ions. II. Structures of 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5) complexed with calcium and magnesium thiocyanates. Acta Crystallogr Sect C 44:73–77. doi:10.1107/S0108270187009107 CrossRef Wei YY, Tinant B, Declercq J-P, Van Meerssche M, Dale J (1988) Crown ether complexes of alkaline-earth metal ions. II. Structures of 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5) complexed with calcium and magnesium thiocyanates. Acta Crystallogr Sect C 44:73–77. doi:10.​1107/​S010827018700910​7 CrossRef
44.
go back to reference DL Foster, J Wolfenstine, WK Behl (1999) Tertiary polyamines as additives to lithium-ion battery electrolytes. In: S Surampudi, R Marsh (eds) Proceedings of the symposium on lithium batteries, vol 98–16. The Electrochemical Society, Pennington, NJ, p 391 DL Foster, J Wolfenstine, WK Behl (1999) Tertiary polyamines as additives to lithium-ion battery electrolytes. In: S Surampudi, R Marsh (eds) Proceedings of the symposium on lithium batteries, vol 98–16. The Electrochemical Society, Pennington, NJ, p 391
45.
go back to reference Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178. doi:10.1021/ic951325x CrossRef Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178. doi:10.​1021/​ic951325x CrossRef
47.
go back to reference Ganapatibhotla LVNR, Wu L, Zheng J, Jia X, Roy D, McLaughlin JB, Krishnan S (2011) Ionic liquids with fluorinated block-oligomer tails: influence of self-assembly on transport properties. J Mater Chem 21:19275–19285. doi:10.1039/c1jm14526f CrossRef Ganapatibhotla LVNR, Wu L, Zheng J, Jia X, Roy D, McLaughlin JB, Krishnan S (2011) Ionic liquids with fluorinated block-oligomer tails: influence of self-assembly on transport properties. J Mater Chem 21:19275–19285. doi:10.​1039/​c1jm14526f CrossRef
48.
go back to reference Moganty SS, Chinthamanipeta PS, Vendra VK, Krishnan S, Baltus RE (2014) Structure–property relationships in transport and thermodynamic properties of imidazolium bistriflamide ionic liquids for CO2 capture. Chem Eng J 250:377–389. doi:10.1016/j.cej.2014.04.010 CrossRef Moganty SS, Chinthamanipeta PS, Vendra VK, Krishnan S, Baltus RE (2014) Structure–property relationships in transport and thermodynamic properties of imidazolium bistriflamide ionic liquids for CO2 capture. Chem Eng J 250:377–389. doi:10.​1016/​j.​cej.​2014.​04.​010 CrossRef
49.
go back to reference Vranes M, Dozic S, Djeric V, Gadzuric S (2012) Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 57:1072–1077. doi:10.1021/je2010837 CrossRef Vranes M, Dozic S, Djeric V, Gadzuric S (2012) Physicochemical characterization of 1-butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 57:1072–1077. doi:10.​1021/​je2010837 CrossRef
51.
52.
54.
go back to reference Lebga-Nebane JL, Rock SE, Franclemont J, Roy D, Krishnan S (2012) Thermophysical properties and proton transport mechanisms of trialkylammonium and 1-alkyl-1H-imidazol-3-ium protic ionic liquids. Ind Eng Chem Res 51:14084–14098. doi:10.1021/ie301687c CrossRef Lebga-Nebane JL, Rock SE, Franclemont J, Roy D, Krishnan S (2012) Thermophysical properties and proton transport mechanisms of trialkylammonium and 1-alkyl-1H-imidazol-3-ium protic ionic liquids. Ind Eng Chem Res 51:14084–14098. doi:10.​1021/​ie301687c CrossRef
55.
go back to reference Grest GS, Cohen MH (1981) Liquids, glasses, and the glass transition: a free-volume approach. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 48. John Wiley & Sons, Hoboken, NJ, p 455–525. doi:10.1002/9780470142684.ch6 Grest GS, Cohen MH (1981) Liquids, glasses, and the glass transition: a free-volume approach. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 48. John Wiley & Sons, Hoboken, NJ, p 455–525. doi:10.​1002/​9780470142684.​ch6
57.
go back to reference Lau GP, Décoppet J-D, Moehl T, Zakeeruddin SM, Grätzel M, Dyson PJ (2015) Robust high-performance dye-sensitized solar cells based on ionic liquid-sulfolane composite electrolytes. Sci Rep 5:18158. doi:10.1038/srep18158 CrossRef Lau GP, Décoppet J-D, Moehl T, Zakeeruddin SM, Grätzel M, Dyson PJ (2015) Robust high-performance dye-sensitized solar cells based on ionic liquid-sulfolane composite electrolytes. Sci Rep 5:18158. doi:10.​1038/​srep18158 CrossRef
65.
66.
go back to reference An Y, Zuo P, Cheng X, Liao L, Yin G (2011) Preparation and properties of ionic-liquid mixed solutions as a safety electrolyte for lithium ion batteries. Int J Electrochem Sci 6:2398–2410 An Y, Zuo P, Cheng X, Liao L, Yin G (2011) Preparation and properties of ionic-liquid mixed solutions as a safety electrolyte for lithium ion batteries. Int J Electrochem Sci 6:2398–2410
67.
go back to reference Egashira M, Tanaka-Nakagawa M, Watanabe I, Okada S, Yamaki J-i (2006) Charge–discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation. J Power Sources 160:1387–1390. doi:10.1016/j.jpowsour.2006.03.015 CrossRef Egashira M, Tanaka-Nakagawa M, Watanabe I, Okada S, Yamaki J-i (2006) Charge–discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation. J Power Sources 160:1387–1390. doi:10.​1016/​j.​jpowsour.​2006.​03.​015 CrossRef
68.
go back to reference Moreno M, Simonetti E, Appetecchi G, Carewska M, Montanino M, Kim G-T, Loeffler N, Passerini S (2017) Ionic liquid electrolytes for safer lithium batteries: I. Investigation around optimal formulation. J Electrochem Soc 164:A6026–A6031. doi:10.1149/2.0051701jes CrossRef Moreno M, Simonetti E, Appetecchi G, Carewska M, Montanino M, Kim G-T, Loeffler N, Passerini S (2017) Ionic liquid electrolytes for safer lithium batteries: I. Investigation around optimal formulation. J Electrochem Soc 164:A6026–A6031. doi:10.​1149/​2.​0051701jes CrossRef
69.
go back to reference Anouti M, Timperman L (2013) A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors. Phys Chem Chem Phys 15:6539–6548. doi:10.1039/C3CP44680H CrossRef Anouti M, Timperman L (2013) A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors. Phys Chem Chem Phys 15:6539–6548. doi:10.​1039/​C3CP44680H CrossRef
70.
go back to reference Boisset A, Menne S, Jacquemin J, Balducci A, Anouti M (2013) Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys Chem Chem Phys 15:20054–20063. doi:10.1039/C3CP53406E CrossRef Boisset A, Menne S, Jacquemin J, Balducci A, Anouti M (2013) Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys Chem Chem Phys 15:20054–20063. doi:10.​1039/​C3CP53406E CrossRef
71.
go back to reference Vogl T, Menne S, Kuhnel R-S, Balducci A (2014) The beneficial effect of protic ionic liquids on the lithium environment in electrolytes for battery applications. J Mater Chem A 2:8258–8265. doi:10.1039/C3TA15224C CrossRef Vogl T, Menne S, Kuhnel R-S, Balducci A (2014) The beneficial effect of protic ionic liquids on the lithium environment in electrolytes for battery applications. J Mater Chem A 2:8258–8265. doi:10.​1039/​C3TA15224C CrossRef
72.
go back to reference Singh P, Banhatti RD, Funke K (2005) Non-arrhenius viscosity related to short-time ion dynamics in a fragile molten salt. Phys Chem Chem Phys 7:1096–1099. doi:10.1039/B418432G CrossRef Singh P, Banhatti RD, Funke K (2005) Non-arrhenius viscosity related to short-time ion dynamics in a fragile molten salt. Phys Chem Chem Phys 7:1096–1099. doi:10.​1039/​B418432G CrossRef
73.
go back to reference Yamaguchi T, Yonezawa T, Koda S (2015) Study on the temperature-dependent coupling among viscosity, conductivity and structural relaxation of ionic liquids. Phys Chem Chem Phys 17:19126–19133. doi:10.1039/C5CP02335A CrossRef Yamaguchi T, Yonezawa T, Koda S (2015) Study on the temperature-dependent coupling among viscosity, conductivity and structural relaxation of ionic liquids. Phys Chem Chem Phys 17:19126–19133. doi:10.​1039/​C5CP02335A CrossRef
74.
go back to reference Lee S-Y, Ueno K, Angell CA (2012) Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: a Walden plot analysis of the maximally conductive compositions. J Phys Chem C 116:23915–23920. doi:10.1021/jp3067519 CrossRef Lee S-Y, Ueno K, Angell CA (2012) Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: a Walden plot analysis of the maximally conductive compositions. J Phys Chem C 116:23915–23920. doi:10.​1021/​jp3067519 CrossRef
75.
go back to reference Yoon H, Best AS, Forsyth M, MacFarlane DR, Howlett PC (2015) Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. Phys Chem Chem Phys 17:4656–4663. doi:10.1039/C4CP05333H CrossRef Yoon H, Best AS, Forsyth M, MacFarlane DR, Howlett PC (2015) Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. Phys Chem Chem Phys 17:4656–4663. doi:10.​1039/​C4CP05333H CrossRef
76.
go back to reference Chen HP, Fergus JW, Jang BZ (2000) The effect of ethylene carbonate and salt concentration on the conductivity of propylene carbonate/lithium perchlorate electrolytes. J Electrochem Soc 147:399–406. doi:10.1149/1.1393209 CrossRef Chen HP, Fergus JW, Jang BZ (2000) The effect of ethylene carbonate and salt concentration on the conductivity of propylene carbonate/lithium perchlorate electrolytes. J Electrochem Soc 147:399–406. doi:10.​1149/​1.​1393209 CrossRef
78.
go back to reference Rong H, Xu M, Xie B, Lin H, Zhu Y, Zheng X, Huang W, Liao Y, Xing L, Li W (2016) A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes. J Power Sources 329:586–593. doi:10.1016/j.jpowsour.2016.07.120 CrossRef Rong H, Xu M, Xie B, Lin H, Zhu Y, Zheng X, Huang W, Liao Y, Xing L, Li W (2016) A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes. J Power Sources 329:586–593. doi:10.​1016/​j.​jpowsour.​2016.​07.​120 CrossRef
79.
go back to reference Levi MD, Dargel V, Shilina Y, Borgel V, Aurbach D, Halalay IC (2015) Tailoring the potential window of negative electrodes: a diagnostic method for understanding parasitic oxidation reactions in cells with 5 V LiNi0.5Mn1.5O4 positive electrodes. J Power Sources 278:599–607. doi:10.1016/j.jpowsour.2014.12.130 CrossRef Levi MD, Dargel V, Shilina Y, Borgel V, Aurbach D, Halalay IC (2015) Tailoring the potential window of negative electrodes: a diagnostic method for understanding parasitic oxidation reactions in cells with 5 V LiNi0.5Mn1.5O4 positive electrodes. J Power Sources 278:599–607. doi:10.​1016/​j.​jpowsour.​2014.​12.​130 CrossRef
80.
go back to reference Jha AR (2012) Next-generation batteries and fuel cells for commercial, military, and space applications. CRC Press, Boca RatonCrossRef Jha AR (2012) Next-generation batteries and fuel cells for commercial, military, and space applications. CRC Press, Boca RatonCrossRef
81.
go back to reference Chin WC, Su Y, Sheng L, Li L, Bian H, Shi R (2014) Measurement while drilling (MWD) signal analysis, optimization and design. Wiley-Scrivener, Salem, MACrossRef Chin WC, Su Y, Sheng L, Li L, Bian H, Shi R (2014) Measurement while drilling (MWD) signal analysis, optimization and design. Wiley-Scrivener, Salem, MACrossRef
82.
Metadata
Title
Thermophysical and transport properties of blends of an ether-derivatized imidazolium ionic liquid and a Li+-based solvate ionic liquid
Authors
Yanni Wang
Michael C. Turk
Malavarayan Sankarasubramanian
Anirudh Srivatsa
Dipankar Roy
Sitaraman Krishnan
Publication date
10-01-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 7/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0735-5

Other articles of this Issue 7/2017

Journal of Materials Science 7/2017 Go to the issue

Premium Partners