Skip to main content
Top
Published in: Wireless Networks 6/2020

18-03-2020

RETRACTED ARTICLE: Throughput maximization of multichannel allocation mechanism under interference constraint for hybrid overlay/underlay cognitive radio networks with energy harvesting

Author: Hakan Murat Karaca

Published in: Wireless Networks | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

By harvesting energy from ambient radio frequency (RF) signals, significant progress has been achieved in wireless networks self-maintaining their life cycles. Motivated by this and improved spectrum reuse by combined use of overlay/underlay modes of cognitive radio networks (CRNs), this paper proposes a novel multi-channel (m-channel) allocation performance maximization algorithm for low-power mobiles. CRNs, called secondary transmitters (STs), can harvest energy from RF signals by nearby active primary transmitters (PTs). In the proposed scheme, PTs and STs are distributed as independent homogeneous Poisson point processes and contact their receivers at fixed distances. Each PT contains a guard zone to protect its intended receiver from ST interference, and provides RF energy to STs located in its harvesting zone. Prioritization of STs during opportunistic allocation of channels is critical as properties like energy level and harvesting capability improve channel distribution performance. A novel metric is proposed that prioritizes STs based on initial energy levels, harvesting capability, and number of channels through which they can transmit. For comparison, three algorithms were considered: a greedy mechanism for m-channel allocation of hybrid CRNs without harvesting, the proposed m-channel allocation schemes based on maximum independent sets (MIS), and the proposed metric of hybrid CRNs with harvesting capability. The simulations show that the proposed m-channel allocation method based on MIS outperforms the greedy algorithm. The proposed m-channel allocation using the proposed metric on hybrid CRNs with energy harvesting ability produced the best performance of the three methods, proving the superiority of the proposed algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys and Tutorials, 13(4), 524–540.CrossRef Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys and Tutorials, 13(4), 524–540.CrossRef
2.
go back to reference Cai, L. X., Poor, H. V., Liu, Y., Luan, T. H., Shen, X., & Mark, J. W. (2011). Dimensioning network deployment and resource management in green mesh networks. IEEE Wireless Communication, 18(5), 58–65.CrossRef Cai, L. X., Poor, H. V., Liu, Y., Luan, T. H., Shen, X., & Mark, J. W. (2011). Dimensioning network deployment and resource management in green mesh networks. IEEE Wireless Communication, 18(5), 58–65.CrossRef
3.
go back to reference Cuadras, A., Gasulla, M., & Ferrari, V. (2010). Thermal energy harvesting through pyroelectricity. Sensors and Actuators A: Physical, 158(1), 132–139.CrossRef Cuadras, A., Gasulla, M., & Ferrari, V. (2010). Thermal energy harvesting through pyroelectricity. Sensors and Actuators A: Physical, 158(1), 132–139.CrossRef
4.
go back to reference Kolodzy, P., & Avoidance, I. (2002). Spectrum policy task force report. Federal Communications Commission, 40(4), 147–158. Kolodzy, P., & Avoidance, I. (2002). Spectrum policy task force report. Federal Communications Commission, 40(4), 147–158.
5.
go back to reference Liu, X., Zhu, Y., Kong, L., Liu, C., Gu, Y., & Vasilakos, A. V., et al. (2015). CDC: Compressive data collection for wireless sensor networks. In Proceedings of the annual international conference on mobile computing and networking (MOBICOM) (Vol. 26, No. 8, pp. 2188–2197). Liu, X., Zhu, Y., Kong, L., Liu, C., Gu, Y., & Vasilakos, A. V., et al. (2015). CDC: Compressive data collection for wireless sensor networks. In Proceedings of the annual international conference on mobile computing and networking (MOBICOM) (Vol. 26, No. 8, pp. 2188–2197).
6.
go back to reference Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications Magazine, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications Magazine, 6(4), 13–18.CrossRef
7.
go back to reference Chang, Y. C., & Wang, N. (2017). Legal system for the development of marine renewable energy in China. Renewable and Sustainable Energy Reviews, 75, 192–196.CrossRef Chang, Y. C., & Wang, N. (2017). Legal system for the development of marine renewable energy in China. Renewable and Sustainable Energy Reviews, 75, 192–196.CrossRef
8.
go back to reference Zhang, L., Liang, Y.-C., & Xin, Y. (2008). Joint beamforming and power allocation for multiple access channels in cognitive radio networks. IEEE Journal of Selected Areas in Communications, 26(1), 38–51.CrossRef Zhang, L., Liang, Y.-C., & Xin, Y. (2008). Joint beamforming and power allocation for multiple access channels in cognitive radio networks. IEEE Journal of Selected Areas in Communications, 26(1), 38–51.CrossRef
9.
go back to reference Liang, Y.-C., Zeng, Y., & Hoang, A. T. P. (2008). Sensing throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef Liang, Y.-C., Zeng, Y., & Hoang, A. T. P. (2008). Sensing throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef
10.
go back to reference Lee, S., Huang, K., & Zhang, R. (2012). Cognitive energy harvesting and transmission from a network perspective. In Proceedings of IEEE international conference on communication systems (ICCS) (pp. 225–229). Lee, S., Huang, K., & Zhang, R. (2012). Cognitive energy harvesting and transmission from a network perspective. In Proceedings of IEEE international conference on communication systems (ICCS) (pp. 225–229).
11.
go back to reference Plata, D. M. M., & Reátiga, A. G. A. (2012). Evaluation of energy detection for spectrum sensing based on the dynamic selection of detection-threshold. Procedia Engineering, 35, 135–143.CrossRef Plata, D. M. M., & Reátiga, A. G. A. (2012). Evaluation of energy detection for spectrum sensing based on the dynamic selection of detection-threshold. Procedia Engineering, 35, 135–143.CrossRef
12.
go back to reference Stoopman, M., Keyrouz, S., Visser, H. J., Philips, K., & Serdijn, W. A. (2014). Co-design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters. IEEE Journal Solid-State Circuits, 49(3), 622–634.CrossRef Stoopman, M., Keyrouz, S., Visser, H. J., Philips, K., & Serdijn, W. A. (2014). Co-design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters. IEEE Journal Solid-State Circuits, 49(3), 622–634.CrossRef
13.
go back to reference Zhang, Y., Han, W., Li, D., Zhang, P., & Cui, S. (2015). Power versus spectrum 2-D sensing in energy harvesting cognitive radio networks. IEEE Transactions Signal Processing, 63(23), 6200–6212.MathSciNetMATHCrossRef Zhang, Y., Han, W., Li, D., Zhang, P., & Cui, S. (2015). Power versus spectrum 2-D sensing in energy harvesting cognitive radio networks. IEEE Transactions Signal Processing, 63(23), 6200–6212.MathSciNetMATHCrossRef
14.
go back to reference Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(9), 4788–4799.CrossRef Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(9), 4788–4799.CrossRef
15.
go back to reference Yin, S., Qu, Z., & Li, S. (2015). Achievable throughput optimization in energy harvesting cognitive radio systems. IEEE Journal Selected Areas Communications, 33(3), 407–422.CrossRef Yin, S., Qu, Z., & Li, S. (2015). Achievable throughput optimization in energy harvesting cognitive radio systems. IEEE Journal Selected Areas Communications, 33(3), 407–422.CrossRef
16.
go back to reference Pratibha, Li, K. H., & Teh, K. C. (2017). Optimal spectrum access and energy supply for cognitive radio systems with opportunistic RF energy harvesting. IEEE Transactions on Vehicular Technology, 66(8), 7114–7122.CrossRef Pratibha, Li, K. H., & Teh, K. C. (2017). Optimal spectrum access and energy supply for cognitive radio systems with opportunistic RF energy harvesting. IEEE Transactions on Vehicular Technology, 66(8), 7114–7122.CrossRef
17.
go back to reference Park, S., Kim, H., & Hong, D. (2013). Cognitive radio networks with energy harvesting. IEEE Transactions on Wireless Communications, 12(3), 1386–1397.CrossRef Park, S., Kim, H., & Hong, D. (2013). Cognitive radio networks with energy harvesting. IEEE Transactions on Wireless Communications, 12(3), 1386–1397.CrossRef
18.
go back to reference Park, S., & Hong, D. (2013). Optimal spectrum access for energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 12, 6166–6179.CrossRef Park, S., & Hong, D. (2013). Optimal spectrum access for energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 12, 6166–6179.CrossRef
19.
go back to reference Yang, Z., Ding, Z., Fan, P., & Karagiannidis, G. K. (2016). Outage performance of cognitive relay networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3828–3833.CrossRef Yang, Z., Ding, Z., Fan, P., & Karagiannidis, G. K. (2016). Outage performance of cognitive relay networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3828–3833.CrossRef
20.
go back to reference Wang, Z., Chen, Z., Xia, B., Luo, L., & Zhou, J. (2016). Cognitive relay networks with energy harvesting and information transfer: Design, analysis, and optimization. IEEE Transactions on Wireless Communications, 15(4), 2562–2576.CrossRef Wang, Z., Chen, Z., Xia, B., Luo, L., & Zhou, J. (2016). Cognitive relay networks with energy harvesting and information transfer: Design, analysis, and optimization. IEEE Transactions on Wireless Communications, 15(4), 2562–2576.CrossRef
21.
go back to reference Hoang, D. T., Niyato, D., Wang, P., & Kim, D. I. (2014). Opportunistic channel access and RF energy harvesting in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 32(11), 2039–2052.CrossRef Hoang, D. T., Niyato, D., Wang, P., & Kim, D. I. (2014). Opportunistic channel access and RF energy harvesting in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 32(11), 2039–2052.CrossRef
22.
go back to reference Zheng, G., Ho, Z., Jorswieck, E. A., & Ottersten, B. (2014). Information and energy cooperation in cognitive radio networks. IEEE Transactions on Signal Processing, 62(9), 2290–2303.MathSciNetMATHCrossRef Zheng, G., Ho, Z., Jorswieck, E. A., & Ottersten, B. (2014). Information and energy cooperation in cognitive radio networks. IEEE Transactions on Signal Processing, 62(9), 2290–2303.MathSciNetMATHCrossRef
23.
go back to reference Yin, S., Zhang, E., Qu, Z., Yin, L., & Li, S. (2014). Optimal cooperation strategy in cognitive radio systems with energy harvesting. IEEE Transactions on Wireless Communications, 13(9), 4693–4707.CrossRef Yin, S., Zhang, E., Qu, Z., Yin, L., & Li, S. (2014). Optimal cooperation strategy in cognitive radio systems with energy harvesting. IEEE Transactions on Wireless Communications, 13(9), 4693–4707.CrossRef
24.
go back to reference Pratibha, M., Li, K. H., & Teh, K. C. (2016). Channel selection in multichannel cognitive radio systems employing RF energy harvesting. IEEE Transactions on Vehicular Technology, 65(1), 457–462.CrossRef Pratibha, M., Li, K. H., & Teh, K. C. (2016). Channel selection in multichannel cognitive radio systems employing RF energy harvesting. IEEE Transactions on Vehicular Technology, 65(1), 457–462.CrossRef
25.
go back to reference Bae, Y. H., & Baek, J. W. (2016). Achievable throughput analysis of opportunistic spectrum access in cognitive radio networks with energy harvesting. IEEE Transactions on Communications, 64(4), 1399–1410.CrossRef Bae, Y. H., & Baek, J. W. (2016). Achievable throughput analysis of opportunistic spectrum access in cognitive radio networks with energy harvesting. IEEE Transactions on Communications, 64(4), 1399–1410.CrossRef
26.
go back to reference Park, S., Heo, J., Kim, B., Chung, W., Wang, H., & Hong, D. (2012). Optimal mode selection for cognitive radio sensor networks with RF energy harvesting. In IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications—(PIMRC) (pp. 2155–2159). Park, S., Heo, J., Kim, B., Chung, W., Wang, H., & Hong, D. (2012). Optimal mode selection for cognitive radio sensor networks with RF energy harvesting. In IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications—(PIMRC) (pp. 2155–2159).
27.
go back to reference Barroca, N., Ferro, J. M., Borges, L. M., Tavares, J., & Velez F. J. (2012). Electromagnetic energy harvesting for wireless body area networks with cognitive radio capabilities. In Proceedings of URSI seminar Portuguese communications. Barroca, N., Ferro, J. M., Borges, L. M., Tavares, J., & Velez F. J. (2012). Electromagnetic energy harvesting for wireless body area networks with cognitive radio capabilities. In Proceedings of URSI seminar Portuguese communications.
28.
go back to reference Senthuran, S., Anpalagan, A., & Das, O. (2012). Throughput analysis of opportunistic access strategies in hybrid underlay-Overlay cognitive radio networks. IEEE Transactions on Wireless Communications, 11(6), 2024–2035.CrossRef Senthuran, S., Anpalagan, A., & Das, O. (2012). Throughput analysis of opportunistic access strategies in hybrid underlay-Overlay cognitive radio networks. IEEE Transactions on Wireless Communications, 11(6), 2024–2035.CrossRef
29.
go back to reference Usman, M., & Koo, I. (2014). Access strategy for hybrid underlay-overlay cognitive radios with energy harvesting. IEEE Sensors Journal, 14(9), 3164–3173.CrossRef Usman, M., & Koo, I. (2014). Access strategy for hybrid underlay-overlay cognitive radios with energy harvesting. IEEE Sensors Journal, 14(9), 3164–3173.CrossRef
30.
go back to reference Ma, B., Cheung, M. H., Wong, V. W. S., & Huang, J. (2015). Hybrid overlay/underlay cognitive Femtocell networks: A game theoretic approach. IEEE Transactions on Wireless Communications, 14(6), 3259–3270.CrossRef Ma, B., Cheung, M. H., Wong, V. W. S., & Huang, J. (2015). Hybrid overlay/underlay cognitive Femtocell networks: A game theoretic approach. IEEE Transactions on Wireless Communications, 14(6), 3259–3270.CrossRef
31.
go back to reference Lee, S., & Zhang, R. (2015). Cognitive wireless powered network: Spectrum sharing models and throughput maximization. IEEE Transactions on Cognitive Communications and Networking, 1(3), 335–346.CrossRef Lee, S., & Zhang, R. (2015). Cognitive wireless powered network: Spectrum sharing models and throughput maximization. IEEE Transactions on Cognitive Communications and Networking, 1(3), 335–346.CrossRef
32.
go back to reference Kim, J., Lee, H., Song, C., Oh, T., & Lee, I. (2017). Sum throughput maximization for multi-user MIMO cognitive wireless powered communication networks. IEEE Transactions on Wireless Communications, 16(2), 913–923.CrossRef Kim, J., Lee, H., Song, C., Oh, T., & Lee, I. (2017). Sum throughput maximization for multi-user MIMO cognitive wireless powered communication networks. IEEE Transactions on Wireless Communications, 16(2), 913–923.CrossRef
33.
go back to reference Zheng, K., Liu, X., Liu, X., & Zhu, Y. (2019). Hybrid overlay-underlay cognitive radio networks with energy harvesting. IEEE Transactions on Communications, 67, 4669–4682.CrossRef Zheng, K., Liu, X., Liu, X., & Zhu, Y. (2019). Hybrid overlay-underlay cognitive radio networks with energy harvesting. IEEE Transactions on Communications, 67, 4669–4682.CrossRef
34.
go back to reference Petar, P., Hiroyuki, Y., Kentaro, N., Rocco, T., & NirmalaDevi, R. (2007). Opportunistic interference cancellation in cognitive radio systems. In IEEE international Symposium on dynamic spectrum access networks (pp. 472–475). Petar, P., Hiroyuki, Y., Kentaro, N., Rocco, T., & NirmalaDevi, R. (2007). Opportunistic interference cancellation in cognitive radio systems. In IEEE international Symposium on dynamic spectrum access networks (pp. 472–475).
35.
go back to reference Liu, X., Zheng, K., Liu, X.-Y., Wang, X., & Zhu, Y. (2019). Hierarchical cooperation improves delay in cognitive radio networks with mobile secondary nodes. IEEE Transactions on Mobile Computing, 18(12), 2871–2884.CrossRef Liu, X., Zheng, K., Liu, X.-Y., Wang, X., & Zhu, Y. (2019). Hierarchical cooperation improves delay in cognitive radio networks with mobile secondary nodes. IEEE Transactions on Mobile Computing, 18(12), 2871–2884.CrossRef
36.
go back to reference Awin, F. A., Alginahi, Y. M., Abdel-Raheem, E., & Tepe, K. (2019). Technical issues on cognitive radio-based internet of things systems: A survey. IEEE Access, 7, 97887–97908.CrossRef Awin, F. A., Alginahi, Y. M., Abdel-Raheem, E., & Tepe, K. (2019). Technical issues on cognitive radio-based internet of things systems: A survey. IEEE Access, 7, 97887–97908.CrossRef
37.
go back to reference Awin, F., Abdel-Raheem, E., & Tepe, K. (2019). Blind spectrum sensing approaches for interweaved cognitive radio system: A tutorial and short course. IEEE Communications Surveys and Tutorials, 21, 238–259.CrossRef Awin, F., Abdel-Raheem, E., & Tepe, K. (2019). Blind spectrum sensing approaches for interweaved cognitive radio system: A tutorial and short course. IEEE Communications Surveys and Tutorials, 21, 238–259.CrossRef
38.
go back to reference Le, T., Mayaram, K., & Fiez, T. (2008). Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE Journal of Solid-State Circuits, 43, 1287–1302.CrossRef Le, T., Mayaram, K., & Fiez, T. (2008). Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE Journal of Solid-State Circuits, 43, 1287–1302.CrossRef
40.
go back to reference Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.CrossRef Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.CrossRef
41.
go back to reference Yilmaz, Y., Guo, Z., & Wang, X. (2014). Sequential joint spectrum sensing and channel estimation for dynamic spectrum access. IEEE Journal on Selected Areas in Communications, 32(11), 2000–2012.CrossRef Yilmaz, Y., Guo, Z., & Wang, X. (2014). Sequential joint spectrum sensing and channel estimation for dynamic spectrum access. IEEE Journal on Selected Areas in Communications, 32(11), 2000–2012.CrossRef
42.
go back to reference Chung, W., Park, S., Lim, S., & Hong, D. (2013). Optimal transmit power control for energy-harvesting cognitive radio system. In IEEE 78th vehicular technology conference (VTC Fall) (pp. 1–5). Chung, W., Park, S., Lim, S., & Hong, D. (2013). Optimal transmit power control for energy-harvesting cognitive radio system. In IEEE 78th vehicular technology conference (VTC Fall) (pp. 1–5).
43.
go back to reference Piñuela, M., Mitcheson, P. D., & Lucyszyn, S. (2013). Ambient RF energy harvesting in urban and semi-urban environments. IEEE Transactions on Microwave Theory and Techniques, 61(7), 2715–2726.CrossRef Piñuela, M., Mitcheson, P. D., & Lucyszyn, S. (2013). Ambient RF energy harvesting in urban and semi-urban environments. IEEE Transactions on Microwave Theory and Techniques, 61(7), 2715–2726.CrossRef
44.
go back to reference Karaca, H. M., Kurt, T., Dicle, S. Z., & Anarim, E. (2013). Auction-based throughput maximization in cognitive radio networks under interference constraint. Wireless Personal Communications, 72, 1259–1275.CrossRef Karaca, H. M., Kurt, T., Dicle, S. Z., & Anarim, E. (2013). Auction-based throughput maximization in cognitive radio networks under interference constraint. Wireless Personal Communications, 72, 1259–1275.CrossRef
45.
go back to reference Pei, Y., Liang, Y. C., Teh, K. C., & Li, K. H. (2011). Energy-efficient design of sequential channel sensing in cognitive radio networks: Optimal sensing strategy, power allocation, and sensing order. IEEE Journal on Selected Areas in Communications, 29(8), 1648–1659.CrossRef Pei, Y., Liang, Y. C., Teh, K. C., & Li, K. H. (2011). Energy-efficient design of sequential channel sensing in cognitive radio networks: Optimal sensing strategy, power allocation, and sensing order. IEEE Journal on Selected Areas in Communications, 29(8), 1648–1659.CrossRef
46.
go back to reference Luo, Y., Pu, L., Wang, G., & Zhao, Y. (2019). RF energy harvesting wireless communications: RF environment, device hardware and practical issues. Sensors, 19, 3010.CrossRef Luo, Y., Pu, L., Wang, G., & Zhao, Y. (2019). RF energy harvesting wireless communications: RF environment, device hardware and practical issues. Sensors, 19, 3010.CrossRef
47.
go back to reference Nguyen, D. K., Jayakody, D. N. K., Chatzinotas, S., Thompson, J. S., & Li, J. (2017). Wireless energy harvesting assisted two-way cognitive relay networks: Protocol design and performance analysis. IEEE Access, 5, 21447–21460.CrossRef Nguyen, D. K., Jayakody, D. N. K., Chatzinotas, S., Thompson, J. S., & Li, J. (2017). Wireless energy harvesting assisted two-way cognitive relay networks: Protocol design and performance analysis. IEEE Access, 5, 21447–21460.CrossRef
48.
go back to reference Zhang, H., Feng, M., Long, K., Karagiannidis, G., & Poor, H. V. (2019). Energy efficient resource management in SWIPT enabled heterogeneous networks with NOMA. IEEE Transactions on Wireless Communications, 1–1. Zhang, H., Feng, M., Long, K., Karagiannidis, G., & Poor, H. V. (2019). Energy efficient resource management in SWIPT enabled heterogeneous networks with NOMA. IEEE Transactions on Wireless Communications, 1–1.
49.
go back to reference Zhang, H., Du, J., Cheng, J., Long, K., & Leung, V. C. M. (2018). Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications, 17(3), 1882–1892.CrossRef Zhang, H., Du, J., Cheng, J., Long, K., & Leung, V. C. M. (2018). Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications, 17(3), 1882–1892.CrossRef
Metadata
Title
RETRACTED ARTICLE: Throughput maximization of multichannel allocation mechanism under interference constraint for hybrid overlay/underlay cognitive radio networks with energy harvesting
Author
Hakan Murat Karaca
Publication date
18-03-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02305-3

Other articles of this Issue 6/2020

Wireless Networks 6/2020 Go to the issue