Skip to main content
Top
Published in: Meccanica 4-5/2018

14-10-2017

Time discontinuous finite element method for transient response analysis of linear time-varying structures

Authors: Rui Zhao, Kaiping Yu, Gregory M. Hulbert

Published in: Meccanica | Issue 4-5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a mixed form of Hamilton’s law of variable mass system is proposed, and then a time discontinuous finite element method for transient response analysis of linear time-varying structures is developed based on the law. As these time-varying parameters are degraded into time-invariant ones, the time discontinuous finite element method for linear time-varying structures is degraded into an unconditionally stable higher-order accurate time integration method for linear time-invariant structures. The performance of the proposed time integration method has been verified and assessed extensively through many numerical examples, including the single-degree-of-freedom system with a time-varying mass and the string and beam structure with a moving mass. Numerical results demonstrate that the proposed time finite element method for linear time-varying structures performs extremely well compare with the Newmark method, the existing time continuous finite element method for linear time-varying structures as well as the combination of linear time-invariant time integration method and time frozen technique.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Spiridonakos MD, Poulimenos AG, Fassois SD (2010) Output-only identification and dynamic analysis of time-varying mechanical structures under random excitation: a comparative assessment of parametric methods. J Sound Vib 329(7):768–785ADSCrossRef Spiridonakos MD, Poulimenos AG, Fassois SD (2010) Output-only identification and dynamic analysis of time-varying mechanical structures under random excitation: a comparative assessment of parametric methods. J Sound Vib 329(7):768–785ADSCrossRef
2.
go back to reference Nikkhoo A, Rofooei FR, Shadnam MR (2007) Dynamic behavior and modal control of beams under moving mass. J Sound Vib 306(3):712–724ADSMathSciNetCrossRef Nikkhoo A, Rofooei FR, Shadnam MR (2007) Dynamic behavior and modal control of beams under moving mass. J Sound Vib 306(3):712–724ADSMathSciNetCrossRef
3.
go back to reference Nikkhoo A, Farazandeh A, Ebrahimzadeh Hassanabadi M, Mariani S (2015) Simplified modeling of beam vibrations induced by a moving mass by regression analysis. Acta Mech 226(7):2147–2157MathSciNetCrossRefMATH Nikkhoo A, Farazandeh A, Ebrahimzadeh Hassanabadi M, Mariani S (2015) Simplified modeling of beam vibrations induced by a moving mass by regression analysis. Acta Mech 226(7):2147–2157MathSciNetCrossRefMATH
4.
go back to reference Zarfam R, Khaloo AR, Nikkhoo A (2013) On the response spectrum of Euler–Bernoulli beams with a moving mass and horizontal support excitation. Mech Res Commun 47:77–83CrossRef Zarfam R, Khaloo AR, Nikkhoo A (2013) On the response spectrum of Euler–Bernoulli beams with a moving mass and horizontal support excitation. Mech Res Commun 47:77–83CrossRef
5.
go back to reference Banerjee AK (2000) Dynamics of a variable-mass, flexible-body system. J Guid Control Dyn 23(3):501–508ADSCrossRef Banerjee AK (2000) Dynamics of a variable-mass, flexible-body system. J Guid Control Dyn 23(3):501–508ADSCrossRef
6.
go back to reference Yu K, Yang K, Bai Y (2015) Experimental investigation on the time-varying modal parameters of a trapezoidal plate in temperature-varying environments by subspace tracking-based method. J Vib Control 21(16):3305–3319CrossRef Yu K, Yang K, Bai Y (2015) Experimental investigation on the time-varying modal parameters of a trapezoidal plate in temperature-varying environments by subspace tracking-based method. J Vib Control 21(16):3305–3319CrossRef
7.
go back to reference Nhleko S (2009) Free vibration states of an oscillator with a linear time-varying mass. J Vib Acoust 131(5):051011CrossRef Nhleko S (2009) Free vibration states of an oscillator with a linear time-varying mass. J Vib Acoust 131(5):051011CrossRef
8.
go back to reference Li QS (2001) Free vibration of SDOF systems with arbitrary time-varying coefficients. Int J Mech Sci 43(3):759–770CrossRefMATH Li QS (2001) Free vibration of SDOF systems with arbitrary time-varying coefficients. Int J Mech Sci 43(3):759–770CrossRefMATH
9.
go back to reference Li QS, Fang JQ, Liu DK (2000) Exact solutions for free vibration of single-degree-of-freedom systems with nonperiodically varying parameters. J Vib Control 6(3):449–462CrossRef Li QS, Fang JQ, Liu DK (2000) Exact solutions for free vibration of single-degree-of-freedom systems with nonperiodically varying parameters. J Vib Control 6(3):449–462CrossRef
10.
go back to reference Zhao X, Hu Z, van der Heijden GM (2015) Dynamic analysis of a tapered cantilever beam under a travelling mass. Meccanica 50(6):1419–1429MathSciNetCrossRefMATH Zhao X, Hu Z, van der Heijden GM (2015) Dynamic analysis of a tapered cantilever beam under a travelling mass. Meccanica 50(6):1419–1429MathSciNetCrossRefMATH
11.
go back to reference Bajer CI, Dyniewicz B (2008) Space-time approach to numerical analysis of a string with a moving mass. Int J Numer Methods Eng 76(10):1528–1543MathSciNetCrossRefMATH Bajer CI, Dyniewicz B (2008) Space-time approach to numerical analysis of a string with a moving mass. Int J Numer Methods Eng 76(10):1528–1543MathSciNetCrossRefMATH
12.
go back to reference Bajer CI, Dyniewicz B (2009) Virtual functions of the space-time finite element method in moving mass problems. Comput Struct 87(7):444–455CrossRef Bajer CI, Dyniewicz B (2009) Virtual functions of the space-time finite element method in moving mass problems. Comput Struct 87(7):444–455CrossRef
13.
go back to reference Bajer CI, Dyniewicz B (2012) Numerical analysis of vibrations of structures under moving inertial load. Springer, BerlinCrossRefMATH Bajer CI, Dyniewicz B (2012) Numerical analysis of vibrations of structures under moving inertial load. Springer, BerlinCrossRefMATH
14.
go back to reference Dyniewicz B (2012) Space-time finite element approach to general description of a moving inertial load. Finite Elem Anal Des 62:8–17MathSciNetCrossRef Dyniewicz B (2012) Space-time finite element approach to general description of a moving inertial load. Finite Elem Anal Des 62:8–17MathSciNetCrossRef
15.
go back to reference Zhao R, Yu K (2015) An efficient transient analysis method for linear time-varying structures based on multi-level substructuring method. Comput Struct 146:76–90CrossRef Zhao R, Yu K (2015) An efficient transient analysis method for linear time-varying structures based on multi-level substructuring method. Comput Struct 146:76–90CrossRef
16.
go back to reference Liu X, Zhou G, Zhu S, Wang Y, Sun W, Weng S (2014) A modified highly precise direct integration method for a class of linear time-varying systems. Sci China Phys Mech Astron 57(7):1382–1389ADSCrossRef Liu X, Zhou G, Zhu S, Wang Y, Sun W, Weng S (2014) A modified highly precise direct integration method for a class of linear time-varying systems. Sci China Phys Mech Astron 57(7):1382–1389ADSCrossRef
17.
go back to reference Yue C, Ren X, Yang Y, Deng W (2016) A modified precise integration method based on Magnus expansion for transient response analysis of time varying dynamical structure. Chaos Solitons Fractals 89:40–46ADSMathSciNetCrossRefMATH Yue C, Ren X, Yang Y, Deng W (2016) A modified precise integration method based on Magnus expansion for transient response analysis of time varying dynamical structure. Chaos Solitons Fractals 89:40–46ADSMathSciNetCrossRefMATH
19.
go back to reference Baruch M, Riff R (1982) Hamilton’s principle, Hamilton’s law—6n correct formulations. AIAA J 20(5):687–692ADSCrossRefMATH Baruch M, Riff R (1982) Hamilton’s principle, Hamilton’s law—6n correct formulations. AIAA J 20(5):687–692ADSCrossRefMATH
20.
21.
go back to reference Borri M, Ghiringhelli GL, Lanz M, Mantegazza P, Merlini T (1985) Dynamic response of mechanical systems by a weak Hamiltonian formulation. Comput Struct 20(1):495–508CrossRefMATH Borri M, Ghiringhelli GL, Lanz M, Mantegazza P, Merlini T (1985) Dynamic response of mechanical systems by a weak Hamiltonian formulation. Comput Struct 20(1):495–508CrossRefMATH
22.
go back to reference Borri M, Mello F, Atluri SN (1990) Variational approaches for dynamics and time-finite-elements: numerical studies. Comput Mech 7(1):49–76CrossRefMATH Borri M, Mello F, Atluri SN (1990) Variational approaches for dynamics and time-finite-elements: numerical studies. Comput Mech 7(1):49–76CrossRefMATH
23.
go back to reference Borri M, Mello F, Atluri SN (1991) Primal and mixed forms of Hamiltons’s principle for constrained rigid body systems: numerical studies. Comput Mech 7(3):205–220CrossRefMATH Borri M, Mello F, Atluri SN (1991) Primal and mixed forms of Hamiltons’s principle for constrained rigid body systems: numerical studies. Comput Mech 7(3):205–220CrossRefMATH
24.
go back to reference Borri M, Bottasso C, Mantegazza P (1992) Basic features of the time finite element approach for dynamics. Meccanica 27(2):119–130CrossRefMATH Borri M, Bottasso C, Mantegazza P (1992) Basic features of the time finite element approach for dynamics. Meccanica 27(2):119–130CrossRefMATH
25.
go back to reference Borri M, Bottasso C (1993) A general framework for interpreting time finite element formulations. Comput Mech 13(3):133–142CrossRefMATH Borri M, Bottasso C (1993) A general framework for interpreting time finite element formulations. Comput Mech 13(3):133–142CrossRefMATH
26.
go back to reference Aharoni D, Bar-Yoseph P (1992) Mixed finite element formulations in the time domain for solution of dynamic problems. Comput Mech 9(5):359–374CrossRefMATH Aharoni D, Bar-Yoseph P (1992) Mixed finite element formulations in the time domain for solution of dynamic problems. Comput Mech 9(5):359–374CrossRefMATH
27.
go back to reference Sheng G, Fung TC, Fan SC (1998) Parametrized formulations of Hamilton’s law for numerical solutions of dynamic problems: part II. Time finite element approximation. Comput Mech 21(6):449–460CrossRefMATH Sheng G, Fung TC, Fan SC (1998) Parametrized formulations of Hamilton’s law for numerical solutions of dynamic problems: part II. Time finite element approximation. Comput Mech 21(6):449–460CrossRefMATH
28.
go back to reference Blum H, Jansen T, Rademacher A, Weinert K (2008) Finite elements in space and time for dynamic contact problems. Int J Numer Methods Eng 76(10):1632–1644MathSciNetCrossRefMATH Blum H, Jansen T, Rademacher A, Weinert K (2008) Finite elements in space and time for dynamic contact problems. Int J Numer Methods Eng 76(10):1632–1644MathSciNetCrossRefMATH
29.
go back to reference Bui QV (2006) On the enforcing energy conservation of time-finite elements for particle systems. Int J Numer Methods Eng 68(9):967–992MathSciNetCrossRefMATH Bui QV (2006) On the enforcing energy conservation of time-finite elements for particle systems. Int J Numer Methods Eng 68(9):967–992MathSciNetCrossRefMATH
30.
go back to reference Fung TC (1996) Unconditionally stable higher-order accurate Hermitian time finite elements. Int J Numer Methods Eng 39(20):3475–3495CrossRefMATH Fung TC (1996) Unconditionally stable higher-order accurate Hermitian time finite elements. Int J Numer Methods Eng 39(20):3475–3495CrossRefMATH
32.
go back to reference Penny JET, Howard GF (1980) Time-domain finite-element solutions for single-degree-of-freedom systems with time-dependent parameters. J Mech Eng Sci 22(1):29–33CrossRef Penny JET, Howard GF (1980) Time-domain finite-element solutions for single-degree-of-freedom systems with time-dependent parameters. J Mech Eng Sci 22(1):29–33CrossRef
33.
go back to reference Zhao R, Yu K (2014) Hamilton’s law of variable mass system and time finite element formulations for time-varying structures based on the law. Int J Numer Methods Eng 99(10):711–736MathSciNetCrossRefMATH Zhao R, Yu K (2014) Hamilton’s law of variable mass system and time finite element formulations for time-varying structures based on the law. Int J Numer Methods Eng 99(10):711–736MathSciNetCrossRefMATH
34.
Metadata
Title
Time discontinuous finite element method for transient response analysis of linear time-varying structures
Authors
Rui Zhao
Kaiping Yu
Gregory M. Hulbert
Publication date
14-10-2017
Publisher
Springer Netherlands
Published in
Meccanica / Issue 4-5/2018
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0764-4

Other articles of this Issue 4-5/2018

Meccanica 4-5/2018 Go to the issue

Premium Partners