Skip to main content
Top
Published in: Acta Mechanica Sinica 3/2017

12-05-2017 | Research Paper

Tough and tunable adhesion of hydrogels: experiments and models

Authors: Teng Zhang, Hyunwoo Yuk, Shaoting Lin, German A. Parada, Xuanhe Zhao

Published in: Acta Mechanica Sinica | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As polymer networks infiltrated with water, hydrogels are major constituents of animal and plant bodies and have diverse engineering applications. While natural hydrogels can robustly adhere to other biological materials, such as bonding of tendons and cartilage on bones and adhesive plaques of mussels, it is challenging to achieve such tough adhesions between synthetic hydrogels and engineering materials. Recent experiments show that chemically anchoring long-chain polymer networks of tough synthetic hydrogels on solid surfaces create adhesions tougher than their natural counterparts, but the underlying mechanism has not been well understood. It is also challenging to tune systematically the adhesion of hydrogels on solids. Here, we provide a quantitative understanding of the mechanism for tough adhesions of hydrogels on solid materials via a combination of experiments, theory, and numerical simulations. Using a coupled cohesive-zone and Mullins-effect model validated by experiments, we reveal the interplays of intrinsic work of adhesion, interfacial strength, and energy dissipation in bulk hydrogels in order to achieve tough adhesions. We further show that hydrogel adhesion can be systematically tuned by tailoring the hydrogel geometry and silanization time of solid substrates, corresponding to the control of energy dissipation zone and intrinsic work of adhesion, respectively. The current work further provides a theoretical foundation for rational design of future biocompatible and underwater adhesives.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Bobyn, J., Wilson, G., MacGregor, D., et al.: Effect of pore size on the peel strength of attachment of fibrous tissue to poroussurfaced implants. J. Biomed. Mater. Res. 16, 571–584 (1982)CrossRef Bobyn, J., Wilson, G., MacGregor, D., et al.: Effect of pore size on the peel strength of attachment of fibrous tissue to poroussurfaced implants. J. Biomed. Mater. Res. 16, 571–584 (1982)CrossRef
2.
go back to reference Moretti, M., Wendt, D., Schaefer, D., et al.: Structural characterization and reliable biomechanical assessment of integrative cartilage repair. J. Biomech. 38, 1846–1854 (2005)CrossRef Moretti, M., Wendt, D., Schaefer, D., et al.: Structural characterization and reliable biomechanical assessment of integrative cartilage repair. J. Biomech. 38, 1846–1854 (2005)CrossRef
3.
go back to reference Waite, J.H.: Nature’s underwater adhesive specialist. Int. J. Adhes. Adhes. 7, 9–14 (1987)CrossRef Waite, J.H.: Nature’s underwater adhesive specialist. Int. J. Adhes. Adhes. 7, 9–14 (1987)CrossRef
4.
go back to reference Desmond, K.W., Zacchia, N.A., Waite, J.H., et al.: Dynamics of mussel plaque detachment. Soft Matter 11, 6832–6839 (2015)CrossRef Desmond, K.W., Zacchia, N.A., Waite, J.H., et al.: Dynamics of mussel plaque detachment. Soft Matter 11, 6832–6839 (2015)CrossRef
5.
go back to reference Qin, Z., Buehler, M.J.: Impact tolerance in mussel thread networks by heterogeneous material distribution. Nat. Commun. 4, 2187 (2013) Qin, Z., Buehler, M.J.: Impact tolerance in mussel thread networks by heterogeneous material distribution. Nat. Commun. 4, 2187 (2013)
6.
go back to reference Peppas, N.A., Hilt, J.Z., Khademhosseini, A., et al.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345 (2006)CrossRef Peppas, N.A., Hilt, J.Z., Khademhosseini, A., et al.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345 (2006)CrossRef
7.
go back to reference Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001)CrossRef Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001)CrossRef
8.
go back to reference Keplinger, C., Sun, J.-Y., Foo, C.C., et al.: Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013)CrossRef Keplinger, C., Sun, J.-Y., Foo, C.C., et al.: Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013)CrossRef
9.
go back to reference Lin, S., Yuk, H., Zhang, T., et al.: Stretchable hydrogel electronics and devices. Adv. Mater. 28, 4497–4505 (2016)CrossRef Lin, S., Yuk, H., Zhang, T., et al.: Stretchable hydrogel electronics and devices. Adv. Mater. 28, 4497–4505 (2016)CrossRef
10.
go back to reference Dong, L., Agarwal, A.K., Beebe, D.J., et al.: Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006)CrossRef Dong, L., Agarwal, A.K., Beebe, D.J., et al.: Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006)CrossRef
11.
go back to reference Beebe, D.J., Moore, J.S., Bauer, J.M., et al.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000)CrossRef Beebe, D.J., Moore, J.S., Bauer, J.M., et al.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000)CrossRef
12.
go back to reference Yu, C., Duan, Z., Yuan, P., et al.: Electronically programmable, reversible shape change in twoand threedimensional hydrogel structures. Adv. Mater. 25, 1541–1546 (2013)CrossRef Yu, C., Duan, Z., Yuan, P., et al.: Electronically programmable, reversible shape change in twoand threedimensional hydrogel structures. Adv. Mater. 25, 1541–1546 (2013)CrossRef
13.
go back to reference Sudre, G., Olanier, L., Tran, Y., et al.: Reversible adhesion between a hydrogel and a polymer brush. Soft Matter 8, 8184–8193 (2012)CrossRef Sudre, G., Olanier, L., Tran, Y., et al.: Reversible adhesion between a hydrogel and a polymer brush. Soft Matter 8, 8184–8193 (2012)CrossRef
14.
go back to reference Peak, C.W., Wilker, J.J., Schmidt, G.: A review on tough and sticky hydrogels. Colloid Polym. Sci. 291, 2031–2047 (2013)CrossRef Peak, C.W., Wilker, J.J., Schmidt, G.: A review on tough and sticky hydrogels. Colloid Polym. Sci. 291, 2031–2047 (2013)CrossRef
15.
go back to reference Wu, C.J., Wilker, J.J., Schmidt, G.: Robust and adhesive hydrogels from crosslinked poly (ethylene glycol) and silicate for biomedical use. Macromol. Biosci. 13, 59–66 (2013)CrossRef Wu, C.J., Wilker, J.J., Schmidt, G.: Robust and adhesive hydrogels from crosslinked poly (ethylene glycol) and silicate for biomedical use. Macromol. Biosci. 13, 59–66 (2013)CrossRef
16.
go back to reference Rose, S., Prevoteau, A., Elzière, P., et al.: Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382–385 (2014)CrossRef Rose, S., Prevoteau, A., Elzière, P., et al.: Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382–385 (2014)CrossRef
17.
go back to reference Waite, J.H., Tanzer, M.L.: Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science 212, 1038–1040 (1981)CrossRef Waite, J.H., Tanzer, M.L.: Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science 212, 1038–1040 (1981)CrossRef
18.
go back to reference Lee, H., Scherer, N.F., Messersmith, P.B.: Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. USA 103, 12999–13003 (2006)CrossRef Lee, H., Scherer, N.F., Messersmith, P.B.: Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. USA 103, 12999–13003 (2006)CrossRef
19.
go back to reference Qin, Z., Buehler, M.J.: Molecular mechanics of mussel adhesion proteins. J. Mech. Phys. Solids 62, 19–30 (2014)CrossRef Qin, Z., Buehler, M.J.: Molecular mechanics of mussel adhesion proteins. J. Mech. Phys. Solids 62, 19–30 (2014)CrossRef
20.
go back to reference Lin, Q., Gourdon, D., Sun, C., et al.: Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc. Natl. Acad. Sci. USA 104, 3782–3786 (2007)CrossRef Lin, Q., Gourdon, D., Sun, C., et al.: Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc. Natl. Acad. Sci. USA 104, 3782–3786 (2007)CrossRef
21.
go back to reference Brubaker, C.E., Messersmith, P.B.: Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12, 4326–4334 (2011)CrossRef Brubaker, C.E., Messersmith, P.B.: Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12, 4326–4334 (2011)CrossRef
22.
go back to reference Guvendiren, M., Messersmith, P.B., Shull, K.R.: Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels. Biomacromolecules 9, 122–128 (2007)CrossRef Guvendiren, M., Messersmith, P.B., Shull, K.R.: Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels. Biomacromolecules 9, 122–128 (2007)CrossRef
23.
go back to reference Lee, B.P., Dalsin, J.L., Messersmith, P.B.: Synthesis and gelation of DOPA-modified poly (ethylene glycol) hydrogels. Biomacromolecules 3, 1038–1047 (2002)CrossRef Lee, B.P., Dalsin, J.L., Messersmith, P.B.: Synthesis and gelation of DOPA-modified poly (ethylene glycol) hydrogels. Biomacromolecules 3, 1038–1047 (2002)CrossRef
24.
go back to reference Kim, B.J., Oh, D.X., Kim, S., et al.: Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules 15, 1579–1585 (2014)CrossRef Kim, B.J., Oh, D.X., Kim, S., et al.: Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules 15, 1579–1585 (2014)CrossRef
25.
go back to reference Kurokawa, T., Furukawa, H., Wang, W., et al.: Formation of a strong hydrogel-porous solid interface via the double-network principle. Acta Biomater. 6, 1353–1359 (2010)CrossRef Kurokawa, T., Furukawa, H., Wang, W., et al.: Formation of a strong hydrogel-porous solid interface via the double-network principle. Acta Biomater. 6, 1353–1359 (2010)CrossRef
26.
go back to reference Yuk, H., Zhang, T., Parada, G.A., et al.: Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016) Yuk, H., Zhang, T., Parada, G.A., et al.: Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016)
27.
go back to reference Yuk, H., Zhang, T., Lin, S., et al.: Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190–196 (2016)CrossRef Yuk, H., Zhang, T., Lin, S., et al.: Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190–196 (2016)CrossRef
28.
go back to reference Gent, A., Lai, S.M.: Interfacial bonding, energy dissipation, and adhesion. J. Polym. Sci. Part B 32, 1543–1555 (1994)CrossRef Gent, A., Lai, S.M.: Interfacial bonding, energy dissipation, and adhesion. J. Polym. Sci. Part B 32, 1543–1555 (1994)CrossRef
29.
go back to reference Creton, C., Kramer, E.J., Brown, H.R., et al.: Adhesion and fracture of interfaces between immiscible polymers: from the molecular to the continuum scale. In: Molecular Simulation Fracture Gel Theory, Springer, 53–136 (2001) Creton, C., Kramer, E.J., Brown, H.R., et al.: Adhesion and fracture of interfaces between immiscible polymers: from the molecular to the continuum scale. In: Molecular Simulation Fracture Gel Theory, Springer, 53–136 (2001)
30.
go back to reference Shull, K.R.: Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng. R-Rep. 36, 1–45 (2002)CrossRef Shull, K.R.: Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng. R-Rep. 36, 1–45 (2002)CrossRef
31.
go back to reference Creton, C., Ciccotti, M.: Fracture and adhesion of soft materials: a review. Rep. Prog. Phys. 79, 046601 (2016)CrossRef Creton, C., Ciccotti, M.: Fracture and adhesion of soft materials: a review. Rep. Prog. Phys. 79, 046601 (2016)CrossRef
32.
go back to reference Ahagon, A., Gent, A.: Effect of interfacial bonding on the strength of adhesion. J. Polym. Sci. Polym. Phys. Ed. 13, 1285–1300 (1975)CrossRef Ahagon, A., Gent, A.: Effect of interfacial bonding on the strength of adhesion. J. Polym. Sci. Polym. Phys. Ed. 13, 1285–1300 (1975)CrossRef
33.
go back to reference Gent, A.: Adhesion and strength of viscoelastic solids. Is there a relationship between adhesion and bulk properties? Langmuir 12, 4492–4496 (1996)CrossRef Gent, A.: Adhesion and strength of viscoelastic solids. Is there a relationship between adhesion and bulk properties? Langmuir 12, 4492–4496 (1996)CrossRef
34.
go back to reference Derail, C., Allal, A., Marin, G., et al.: Relationship between viscoelastic and peeling properties of model adhesives. Part 1. Cohesive fracture. J. Adhes. 61, 123–157 (1997)CrossRef Derail, C., Allal, A., Marin, G., et al.: Relationship between viscoelastic and peeling properties of model adhesives. Part 1. Cohesive fracture. J. Adhes. 61, 123–157 (1997)CrossRef
35.
go back to reference Derail, C., Allal, A., Marin, G., et al.: Relationship between viscoelastic and peeling properties of model adhesives. Part 2. The interfacial fracture domains. J. Adhes. 68, 203–228 (1998)CrossRef Derail, C., Allal, A., Marin, G., et al.: Relationship between viscoelastic and peeling properties of model adhesives. Part 2. The interfacial fracture domains. J. Adhes. 68, 203–228 (1998)CrossRef
36.
go back to reference Xu, D.B., Hui, C.Y., Kramer, E.J.: Interface fracture and viscoelastic deformation in finite size specimens. J. Appl. Phys. 72, 3305–3316 (1992)CrossRef Xu, D.B., Hui, C.Y., Kramer, E.J.: Interface fracture and viscoelastic deformation in finite size specimens. J. Appl. Phys. 72, 3305–3316 (1992)CrossRef
37.
go back to reference Creton, C.: Pressure-sensitive adhesives: an introductory course. MRS Bull. 28, 434–439 (2003)CrossRef Creton, C.: Pressure-sensitive adhesives: an introductory course. MRS Bull. 28, 434–439 (2003)CrossRef
38.
go back to reference Villey, R., Creton, C., Cortet, P.-P., et al.: Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives. Soft Matter 11, 3480–3491 (2015)CrossRef Villey, R., Creton, C., Cortet, P.-P., et al.: Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives. Soft Matter 11, 3480–3491 (2015)CrossRef
39.
go back to reference Kim, K.S., Aravas, N.: Elastoplastic analysis of the peel test. Int. J. Solids. Struct. 24, 417–435 (1988)CrossRef Kim, K.S., Aravas, N.: Elastoplastic analysis of the peel test. Int. J. Solids. Struct. 24, 417–435 (1988)CrossRef
40.
go back to reference Kim, K.-S., Kim, J.: Elasto-plastic analysis of the peel test for thin film adhesion. J. Eng. Mater. Technol. 110, 266–273 (1988)CrossRef Kim, K.-S., Kim, J.: Elasto-plastic analysis of the peel test for thin film adhesion. J. Eng. Mater. Technol. 110, 266–273 (1988)CrossRef
41.
go back to reference Wei, Y., Hutchinson, J.W.: Interface strength, work of adhesion and plasticity in the peel test. Int. J. Fract. 93, 315–333 (1998)CrossRef Wei, Y., Hutchinson, J.W.: Interface strength, work of adhesion and plasticity in the peel test. Int. J. Fract. 93, 315–333 (1998)CrossRef
42.
go back to reference Persson, B., Albohr, O., Tartaglino, U., et al.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter. 17, R1 (2005)CrossRef Persson, B., Albohr, O., Tartaglino, U., et al.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter. 17, R1 (2005)CrossRef
43.
go back to reference Hoefnagels, J., Neggers, J., Timmermans, P., et al.: Copper-rubber interface delamination in stretchable electronics. Scr. Mater. 63, 875–878 (2010)CrossRef Hoefnagels, J., Neggers, J., Timmermans, P., et al.: Copper-rubber interface delamination in stretchable electronics. Scr. Mater. 63, 875–878 (2010)CrossRef
44.
go back to reference Vossen, B.G., Schreurs, P.J., van der Sluis, O., et al.: Multi-scale modeling of delamination through fibrillation. J. Mech. Phys. Solids 66, 117–132 (2014)CrossRef Vossen, B.G., Schreurs, P.J., van der Sluis, O., et al.: Multi-scale modeling of delamination through fibrillation. J. Mech. Phys. Solids 66, 117–132 (2014)CrossRef
45.
go back to reference Neggers, J., Hoefnagels, J., van der Sluis, O., et al.: Multi-scale experimental analysis of rate dependent metal-elastomer interface mechanics. J. Mech. Phys. Solids 80, 26–36 (2015)CrossRef Neggers, J., Hoefnagels, J., van der Sluis, O., et al.: Multi-scale experimental analysis of rate dependent metal-elastomer interface mechanics. J. Mech. Phys. Solids 80, 26–36 (2015)CrossRef
46.
go back to reference Vossen, B., van der Sluis, O., Schreurs, P., et al.: High toughness fibrillating metal-elastomer interfaces: on the role of discrete fibrils within the fracture process zone. Eng. Fract. Mech. 2164, 93–105 (2016) Vossen, B., van der Sluis, O., Schreurs, P., et al.: High toughness fibrillating metal-elastomer interfaces: on the role of discrete fibrils within the fracture process zone. Eng. Fract. Mech. 2164, 93–105 (2016)
47.
go back to reference Gong, J.P., Katsuyama, Y., Kurokawa, T., et al.: Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)CrossRef Gong, J.P., Katsuyama, Y., Kurokawa, T., et al.: Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)CrossRef
48.
go back to reference Sun, J.-Y., Zhao, X., Illeperuma, W.R., et al.: Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012)CrossRef Sun, J.-Y., Zhao, X., Illeperuma, W.R., et al.: Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012)CrossRef
49.
go back to reference Zhang, T., Lin, S., Yuk, H., et al.: Predicting fracture energies and crack-tip fields of soft tough materials. Extreme Mech. Lett. 4, 1–8 (2015)CrossRef Zhang, T., Lin, S., Yuk, H., et al.: Predicting fracture energies and crack-tip fields of soft tough materials. Extreme Mech. Lett. 4, 1–8 (2015)CrossRef
50.
go back to reference Maugis, D., Barquins, M.: Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D Appl. Phys. 11, 1989–2023 (1978)CrossRef Maugis, D., Barquins, M.: Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D Appl. Phys. 11, 1989–2023 (1978)CrossRef
51.
go back to reference Rahul-Kumar, P., Jagota, A., Bennison, S., et al.: Polymer interfacial fracture simulations using cohesive elements. Acta Mater. 47, 4161–4169 (1999)CrossRef Rahul-Kumar, P., Jagota, A., Bennison, S., et al.: Polymer interfacial fracture simulations using cohesive elements. Acta Mater. 47, 4161–4169 (1999)CrossRef
52.
go back to reference Mohammed, I., Liechti, K.M.: Cohesive zone modeling of crack nucleation at bimaterial corners. J. Mech. Phys. Solids 48, 735–764 (2000)CrossRefMATH Mohammed, I., Liechti, K.M.: Cohesive zone modeling of crack nucleation at bimaterial corners. J. Mech. Phys. Solids 48, 735–764 (2000)CrossRefMATH
53.
go back to reference Rahulkumar, P., Jagota, A., Bennison, S., et al.: Cohesive element modeling of viscoelastic fracture: application to peel testing of polymers. Int. J. Solids Struct. 37, 1873–1897 (2000)CrossRefMATH Rahulkumar, P., Jagota, A., Bennison, S., et al.: Cohesive element modeling of viscoelastic fracture: application to peel testing of polymers. Int. J. Solids Struct. 37, 1873–1897 (2000)CrossRefMATH
54.
go back to reference Allen, D.H., Searcy, C.R.: A micromechanical model for a viscoelastic cohesive zone. Int. J. Fract. 107, 159–176 (2001)CrossRef Allen, D.H., Searcy, C.R.: A micromechanical model for a viscoelastic cohesive zone. Int. J. Fract. 107, 159–176 (2001)CrossRef
55.
go back to reference Yang, Q., Thouless, M., Ward, S.: Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation. J. Mech. Phys. Solids 47, 1337–1353 (1999)CrossRefMATH Yang, Q., Thouless, M., Ward, S.: Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation. J. Mech. Phys. Solids 47, 1337–1353 (1999)CrossRefMATH
56.
go back to reference Su, C., Wei, Y., Anand, L.: An elastic–plastic interface constitutive model: application to adhesive joints. Int. J. Plast. 20, 2063–2081 (2004)CrossRefMATH Su, C., Wei, Y., Anand, L.: An elastic–plastic interface constitutive model: application to adhesive joints. Int. J. Plast. 20, 2063–2081 (2004)CrossRefMATH
57.
58.
go back to reference Systèmes, D.: Abaqus Analysis User’s Manual. Simulia Corp., Providence (2007) Systèmes, D.: Abaqus Analysis User’s Manual. Simulia Corp., Providence (2007)
59.
go back to reference Kendall, K.: Thin-film peeling-the elastic term. J. Phys. D Appl. Phys. 8, 1449 (1975)CrossRef Kendall, K.: Thin-film peeling-the elastic term. J. Phys. D Appl. Phys. 8, 1449 (1975)CrossRef
60.
go back to reference Kanan, S.M., Tze, W.T., Tripp, C.P.: Method to double the surface concentration and control the orientation of adsorbed (3-aminopropyl) dimethylethoxysilane on silica powders and glass slides. Langmuir 18, 6623–6627 (2002) Kanan, S.M., Tze, W.T., Tripp, C.P.: Method to double the surface concentration and control the orientation of adsorbed (3-aminopropyl) dimethylethoxysilane on silica powders and glass slides. Langmuir 18, 6623–6627 (2002)
61.
go back to reference Moon, J.H., Shin, J.W., Kim, S.Y., et al.: Formation of uniform aminosilane thin layers: an imine formation to measure relative surface density of the amine group. Langmuir 12, 4621–4624 (1996) Moon, J.H., Shin, J.W., Kim, S.Y., et al.: Formation of uniform aminosilane thin layers: an imine formation to measure relative surface density of the amine group. Langmuir 12, 4621–4624 (1996)
62.
go back to reference Sun, T.L., Kurokawa, T., Kuroda, S., et al.: Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013)CrossRef Sun, T.L., Kurokawa, T., Kuroda, S., et al.: Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013)CrossRef
63.
go back to reference Ducrot, E., Chen, Y., Bulters, M., et al.: Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014)CrossRef Ducrot, E., Chen, Y., Bulters, M., et al.: Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014)CrossRef
64.
go back to reference Autumn, K., Liang, Y.A., Hsieh, S.T., et al.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)CrossRef Autumn, K., Liang, Y.A., Hsieh, S.T., et al.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)CrossRef
65.
go back to reference Yao, H., Gao, H.: Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. J. Mech. Phys. Solids 54, 1120–1146 (2006)CrossRefMATH Yao, H., Gao, H.: Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. J. Mech. Phys. Solids 54, 1120–1146 (2006)CrossRefMATH
66.
go back to reference Yuk, H., Lin, S., Ma, C., et al.: Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications 8, 14230 (2017) Yuk, H., Lin, S., Ma, C., et al.: Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications 8, 14230 (2017)
67.
go back to reference Liu, X., Tang, T., Tham, E., et al.: Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Proc. Natl. Acad. Sci. 114, 2200–2205 (2017) Liu, X., Tang, T., Tham, E., et al.: Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Proc. Natl. Acad. Sci. 114, 2200–2205 (2017)
Metadata
Title
Tough and tunable adhesion of hydrogels: experiments and models
Authors
Teng Zhang
Hyunwoo Yuk
Shaoting Lin
German A. Parada
Xuanhe Zhao
Publication date
12-05-2017
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 3/2017
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0661-z

Other articles of this Issue 3/2017

Acta Mechanica Sinica 3/2017 Go to the issue

Preface

Preface

Premium Partners