Skip to main content
Top
Published in: The Journal of Supercomputing 8/2021

28-01-2021

Toward graph classification on structure property using adaptive motif based on graph convolutional network

Authors: Xingquan Li, Hongxi Wu

Published in: The Journal of Supercomputing | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graph convolutional network (GCN) has been widely used in handling various graph data analysis tasks. For graph classification tasks, existing work on graph classification mainly focuses on two aspects of graph similarity: physical structure and practical property. In this paper, we consider the problem of graph classification from a new perspective, namely structural properties. Graph similarity is defined based on structural properties such as maximum clique, minimum vertex coverage, and minimum dominating set of graphs. To capture these structural features, we design an adaptive motif to mine the higher-order connectivity information among nodes. Furthermore, to obtain the unique down-sampling in graph pooling stage, we propose a de-correlation pooling approach. Our extensive experiments on several artificially generated datasets show that our proposed model can effectively classify graphs with similar structural property. It is also experimentally compared with the baseline approach to demonstrate the effectiveness of our adaptive motif GCNs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Luo F, Guo W, Yu Y, Chen G (2017) A multi-label classification algorithm based on kernel extreme learning machine. Neurocomputing 260:313–320CrossRef Luo F, Guo W, Yu Y, Chen G (2017) A multi-label classification algorithm based on kernel extreme learning machine. Neurocomputing 260:313–320CrossRef
2.
go back to reference Shervashidze N, Schweitzer P, Van J, Mehlhorn K, Borgwardt K (2011) Weisfeiler–Lehman graph kernels. J Mach Learn Res 12(9):2539–2561MathSciNetMATH Shervashidze N, Schweitzer P, Van J, Mehlhorn K, Borgwardt K (2011) Weisfeiler–Lehman graph kernels. J Mach Learn Res 12(9):2539–2561MathSciNetMATH
3.
go back to reference Shervashidze N, Vishwanathan SVN, Petri T, Mehlhorn K, Borgwardt K (2009) Efficient graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp 488–495 Shervashidze N, Vishwanathan SVN, Petri T, Mehlhorn K, Borgwardt K (2009) Efficient graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp 488–495
4.
go back to reference Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754CrossRef Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754CrossRef
5.
go back to reference Nikolentzos G, Meladianos P, Vazirgiannis M (2017) Matching node embeddings for graph similarity. In: Thirty-First AAAI Conference on Artificial Intelligence Nikolentzos G, Meladianos P, Vazirgiannis M (2017) Matching node embeddings for graph similarity. In: Thirty-First AAAI Conference on Artificial Intelligence
6.
go back to reference Chen F, Deng P, Wan J, Zhang D, Vasilakos V, Rong X (2015) Data mining for the internet of things: literature review and challenges. Int J Distrib Sens Netw 11(8):431047CrossRef Chen F, Deng P, Wan J, Zhang D, Vasilakos V, Rong X (2015) Data mining for the internet of things: literature review and challenges. Int J Distrib Sens Netw 11(8):431047CrossRef
7.
8.
go back to reference Nguyen H, Maeda I, Oono K (2017) Semi-supervised learning of hierarchical representations of molecules using neural message passing. arXiv:1711.10168 Nguyen H, Maeda I, Oono K (2017) Semi-supervised learning of hierarchical representations of molecules using neural message passing. arXiv:​1711.​10168
9.
go back to reference Levie R, Monti F, Bresson X, Bronstein M (2018) Cayleynets: graph convolutional neural networks with complex rational spectral filters. IEEE Trans Signal Process 67(1):97–109MathSciNetCrossRef Levie R, Monti F, Bresson X, Bronstein M (2018) Cayleynets: graph convolutional neural networks with complex rational spectral filters. IEEE Trans Signal Process 67(1):97–109MathSciNetCrossRef
10.
go back to reference Fout A, Byrd J, Shariat B, Ben-Hur A (2017) Protein interface prediction using graph convolutional networks. Adv Neural Inf Process Syst 30:6530–6539 Fout A, Byrd J, Shariat B, Ben-Hur A (2017) Protein interface prediction using graph convolutional networks. Adv Neural Inf Process Syst 30:6530–6539
11.
go back to reference Ryu S, Lim J, Hong H, Kim Y (2018) Deeply learning molecular structure-property relationships using attention-and gate-augmented graph convolutional network. arXiv:1805.10988 Ryu S, Lim J, Hong H, Kim Y (2018) Deeply learning molecular structure-property relationships using attention-and gate-augmented graph convolutional network. arXiv:​1805.​10988
12.
go back to reference Shang C, Liu Q, Chen S, Sun J, Lu J, Yi J, Bi J (2018) Edge attention-based multi-relational graph convolutional networks Shang C, Liu Q, Chen S, Sun J, Lu J, Yi J, Bi J (2018) Edge attention-based multi-relational graph convolutional networks
14.
go back to reference Wang X, Zhu M, Bo D, Cui P, Shi C, Pei J (2020) AM-GCN: adaptive multi-channel graph convolutional networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 1243–1253 Wang X, Zhu M, Bo D, Cui P, Shi C, Pei J (2020) AM-GCN: adaptive multi-channel graph convolutional networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 1243–1253
15.
go back to reference Khalil E, Dai H, Zhang Y, Dilkina B, Song L (2017) Learning combinatorial optimization algorithms over graphs. Adv Neural Inf Process Syst 30:6348–6358 Khalil E, Dai H, Zhang Y, Dilkina B, Song L (2017) Learning combinatorial optimization algorithms over graphs. Adv Neural Inf Process Syst 30:6348–6358
16.
go back to reference Hastad J (1996) Clique is hard to approximate within \(n^{1-\epsilon }\). In: Proceedings of 37th Conference on Foundations of Computer Science. IEEE, pp 627–636 Hastad J (1996) Clique is hard to approximate within \(n^{1-\epsilon }\). In: Proceedings of 37th Conference on Foundations of Computer Science. IEEE, pp 627–636
17.
19.
20.
go back to reference Gross L, Yellen J (2005) Graph theory and its applications. CRC Press, Boca RatonCrossRef Gross L, Yellen J (2005) Graph theory and its applications. CRC Press, Boca RatonCrossRef
21.
go back to reference Li Y, Gu C, Dullien T, Vinyals O, Kohli P (2019) Graph matching networks for learning the similarity of graph structured objects. arXiv:1904.12787 Li Y, Gu C, Dullien T, Vinyals O, Kohli P (2019) Graph matching networks for learning the similarity of graph structured objects. arXiv:​1904.​12787
22.
go back to reference Benson R, Gleich F, Leskovec J (2016) Higher-order organization of complex networks. Science 353(6295):163–166CrossRef Benson R, Gleich F, Leskovec J (2016) Higher-order organization of complex networks. Science 353(6295):163–166CrossRef
23.
go back to reference Ugander J, Backstrom L, Kleinberg J (2013) Subgraph frequencies: mapping the empirical and extremal geography of large graph collections. In: Proceedings of the 22nd International Conference on World Wide Web, pp 1307–1318 Ugander J, Backstrom L, Kleinberg J (2013) Subgraph frequencies: mapping the empirical and extremal geography of large graph collections. In: Proceedings of the 22nd International Conference on World Wide Web, pp 1307–1318
24.
go back to reference Rotabi R, Kamath K, Kleinberg J, Sharma A (2017) Detecting strong ties using network motifs. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp 983–992 Rotabi R, Kamath K, Kleinberg J, Sharma A (2017) Detecting strong ties using network motifs. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp 983–992
25.
go back to reference Prulj N (2007) Biological network comparison using graphlet degree distribution. Bioinformatics 23(2):e177–e183CrossRef Prulj N (2007) Biological network comparison using graphlet degree distribution. Bioinformatics 23(2):e177–e183CrossRef
26.
27.
go back to reference Paranjape A, Benson R, Leskovec J (2017) Motifs in temporal networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp 601–610 Paranjape A, Benson R, Leskovec J (2017) Motifs in temporal networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp 601–610
28.
go back to reference Li Z, Huang L, Wang D, Lai H (2019) EdMot: an edge enhancement approach for motif-aware community detection. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 479–487 Li Z, Huang L, Wang D, Lai H (2019) EdMot: an edge enhancement approach for motif-aware community detection. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 479–487
29.
go back to reference Li X, Cao C, Zhang T (2020) Block diagonal dominance-based dynamic programming for detecting community. J Supercomput 76:8627–8640 Li X, Cao C, Zhang T (2020) Block diagonal dominance-based dynamic programming for detecting community. J Supercomput 76:8627–8640
30.
go back to reference Zhao H, Xu X, Song Y, Lee L, Chen Z, Gao H (2018) Ranking users in social networks with higher-order structures. In: AAAI, pp 232–240 Zhao H, Xu X, Song Y, Lee L, Chen Z, Gao H (2018) Ranking users in social networks with higher-order structures. In: AAAI, pp 232–240
31.
go back to reference Zhao H, Zhou Y, Song Y, Lee D (2019) Motif enhanced recommendation over heterogeneous information network. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp 2189–2192 Zhao H, Zhou Y, Song Y, Lee D (2019) Motif enhanced recommendation over heterogeneous information network. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp 2189–2192
32.
go back to reference Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are graph neural networks? Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are graph neural networks?
33.
go back to reference Ying Z, You J, Morris C, Ren X, Hamilton W, Leskovec J (2018) Hierarchical graph representation learning with differentiable pooling. In: Advances in Neural Information Processing Systems, pp 4800–4810 Ying Z, You J, Morris C, Ren X, Hamilton W, Leskovec J (2018) Hierarchical graph representation learning with differentiable pooling. In: Advances in Neural Information Processing Systems, pp 4800–4810
36.
go back to reference Diehl F (2019) Edge contraction pooling for graph neural networks. CoRR Diehl F (2019) Edge contraction pooling for graph neural networks. CoRR
37.
go back to reference Ma Y, Wang S, Aggarwal C, Tang J (2019) Graph convolutional networks with eigenpooling. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 723–731 Ma Y, Wang S, Aggarwal C, Tang J (2019) Graph convolutional networks with eigenpooling. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 723–731
40.
go back to reference Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(Nov):2579–2605MATH Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(Nov):2579–2605MATH
Metadata
Title
Toward graph classification on structure property using adaptive motif based on graph convolutional network
Authors
Xingquan Li
Hongxi Wu
Publication date
28-01-2021
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 8/2021
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-021-03628-4

Other articles of this Issue 8/2021

The Journal of Supercomputing 8/2021 Go to the issue

Premium Partner