Skip to main content
Top

2018 | OriginalPaper | Chapter

Towards Voltage-Driven Nano-Spintronics: A Review

Authors : Jin Zhang, Eva Pellicer, Jordi Sort

Published in: Commercialization of Nanotechnologies–A Case Study Approach

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nano-spintronics or nano-spin-electronics is a highly emergent technology that has revolutionized information and communication technologies offering non-volatility in high-density recorded information and an increase of the data processing speed by exploiting both the fundamental charge of electrons as well as their spin degree of freedom in nanoscale devices. The utilization of electric currents, though, poses a challenge in terms of minimization of electric power consumption. Magnetic storage systems and magneto-electronic devices are conventionally controlled by means of magnetic fields (via electromagnetic induction) or using spin-polarized electric currents (spin-transfer torque). Both principles involve significant energy loss by heat dissipation (Joule effect). The replacement of electric current with voltage (or electric field) to control the processing of information would drastically reduce the overall power consumption. Strain-mediated magneto-electric coupling in piezoelectric-magnetostrictive bilayers might appear a proper strategy to achieve this goal. However, this approach is not so suitable in spintronics because of the clamping effects with the substrate, need of epitaxial interfaces and risk of fatigue-induced mechanical failure. The exciting possibility to control ferromagnetism of metals and semiconductors directly with electric field (without strain) has been reported in recent years, but most significant effects occur below 300 K and only in ultra-thin films and nanoparticles. Herein, we provide an overview of the progress in voltage-driven magneto-electric effects in different types of magnetic materials and systems at the nanoscale. The possibility to use these effects in real applications (e.g., electrically-assisted high-density recording media, magnetic random access memories and spin field effect transistors) is described. The ongoing progress in the understanding of these effects is likely to open new paradigms in the field of spintronics and will certainly have a high economic transcendence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Albert FJ, Katine JA, Buhrman RA et al (2000) Spin-polarized current switching of a Co thin film nanomagnet. Appl Phys Lett 77:3809–3811CrossRef Albert FJ, Katine JA, Buhrman RA et al (2000) Spin-polarized current switching of a Co thin film nanomagnet. Appl Phys Lett 77:3809–3811CrossRef
go back to reference Astrov DN (1960) The magnetoelectric effect in antiferromagnetics. J Exp Theor Phys 38:708–709 Astrov DN (1960) The magnetoelectric effect in antiferromagnetics. J Exp Theor Phys 38:708–709
go back to reference Baibich MN, Broto JM, Fert A et al (1998) Giant magnetoresitance of (001)Fe/(001)Cr magnetic super lattice. Phys Rev Lett 61:2472–2475CrossRef Baibich MN, Broto JM, Fert A et al (1998) Giant magnetoresitance of (001)Fe/(001)Cr magnetic super lattice. Phys Rev Lett 61:2472–2475CrossRef
go back to reference Barnes SE, Leda J, Maekawa S (2014) Rashba spin-orbit anisotropy and the electric field control of magnetism. Sci Rep 4:4105CrossRef Barnes SE, Leda J, Maekawa S (2014) Rashba spin-orbit anisotropy and the electric field control of magnetism. Sci Rep 4:4105CrossRef
go back to reference Binasch G, Grünberg P, Saurenbach F et al (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828–4830CrossRef Binasch G, Grünberg P, Saurenbach F et al (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828–4830CrossRef
go back to reference Bonell F, Murakami S, Shiota Y et al (2011) Large change in perpendicular magnetic anisotropy induced by an electric field in FePd ultrathin films. Appl Phys Lett 98:232510CrossRef Bonell F, Murakami S, Shiota Y et al (2011) Large change in perpendicular magnetic anisotropy induced by an electric field in FePd ultrathin films. Appl Phys Lett 98:232510CrossRef
go back to reference Bychkov YA, Rashba ÉI (1984) Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett 39:78–81 Bychkov YA, Rashba ÉI (1984) Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett 39:78–81
go back to reference Cherifi RO, Ivanovskaya V, Philips LC et al (2014) Electric-field control of magnetic order above room temperature. Nat Mater 13:345–351CrossRef Cherifi RO, Ivanovskaya V, Philips LC et al (2014) Electric-field control of magnetic order above room temperature. Nat Mater 13:345–351CrossRef
go back to reference Chiba D, Yamanouchi M, Matsukura F et al (2003) Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301:943–945CrossRef Chiba D, Yamanouchi M, Matsukura F et al (2003) Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301:943–945CrossRef
go back to reference Chiba D, Sawichi M, Nishitani Y et al (2008) Magnetization vector manipulation by electric field. Nature 455:515–518CrossRef Chiba D, Sawichi M, Nishitani Y et al (2008) Magnetization vector manipulation by electric field. Nature 455:515–518CrossRef
go back to reference Chiba D, Fukami S, Shimamura K et al (2011) Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat Mater 10:853–856CrossRef Chiba D, Fukami S, Shimamura K et al (2011) Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat Mater 10:853–856CrossRef
go back to reference Coey JMD, Venkatesan M, Fitzgerald CB (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173–179CrossRef Coey JMD, Venkatesan M, Fitzgerald CB (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173–179CrossRef
go back to reference Cormier M, Ferré J, Mougin A et al (2008) High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics. Rev Sci Instrum 79:033706CrossRef Cormier M, Ferré J, Mougin A et al (2008) High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics. Rev Sci Instrum 79:033706CrossRef
go back to reference Curie P (1894) Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J Phys Theor Appl 3:393–415CrossRefMATH Curie P (1894) Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J Phys Theor Appl 3:393–415CrossRefMATH
go back to reference Datta S, Das B (1990) Electronic analog of the electro-optic modulator. Appl Phys Lett 56:664CrossRef Datta S, Das B (1990) Electronic analog of the electro-optic modulator. Appl Phys Lett 56:664CrossRef
go back to reference Dieny B, Speriosu VS, Metin S et al (1991) Magnetotransport properties of magnetically soft spin-valve structures. J Appl Phys 69:4774–4779CrossRef Dieny B, Speriosu VS, Metin S et al (1991) Magnetotransport properties of magnetically soft spin-valve structures. J Appl Phys 69:4774–4779CrossRef
go back to reference Dieny B, Sousa RC, Hérault J et al (2010) Spin-transfer effect and its use in spintronic components. Int J Nanotechnol 7:591–614CrossRef Dieny B, Sousa RC, Hérault J et al (2010) Spin-transfer effect and its use in spintronic components. Int J Nanotechnol 7:591–614CrossRef
go back to reference Fiederling R, Keim M, Reuscher G et al (1999) Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402:787–790CrossRef Fiederling R, Keim M, Reuscher G et al (1999) Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402:787–790CrossRef
go back to reference Hoffmann A (2013) Spin hall effects in metal. IEEE Trans Magn 49:5172–5193CrossRef Hoffmann A (2013) Spin hall effects in metal. IEEE Trans Magn 49:5172–5193CrossRef
go back to reference Hu JM, Li Z, Chen LQ et al (2011) High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat Commun 2:553CrossRef Hu JM, Li Z, Chen LQ et al (2011) High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat Commun 2:553CrossRef
go back to reference Hu J, Haratipour N, Koester SJ (2015) The effect of output-input isolation on the scaling and energy consumption of all-spin logic devices. J Appl Phys 117:17B524CrossRef Hu J, Haratipour N, Koester SJ (2015) The effect of output-input isolation on the scaling and energy consumption of all-spin logic devices. J Appl Phys 117:17B524CrossRef
go back to reference Huai Y (2008) Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bulletin 18:33–40 Huai Y (2008) Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bulletin 18:33–40
go back to reference Huang YW, Lo CK, Yao YD et al (2004) Giant magnetocurrent in silicon-base magnetic tunneling transistor. J Magn Magn Mater 282:279–282CrossRef Huang YW, Lo CK, Yao YD et al (2004) Giant magnetocurrent in silicon-base magnetic tunneling transistor. J Magn Magn Mater 282:279–282CrossRef
go back to reference Kim HKD, Schelhas LT, Keller S et al (2013) Magnetoelectric control of superparamagnetism. Nano lett 13:884–88 Kim HKD, Schelhas LT, Keller S et al (2013) Magnetoelectric control of superparamagnetism. Nano lett 13:884–88
go back to reference Koo HC, Yi H, Ko JB et al (2007) Electrical spin injection and detection in an InAs quantum well. Appl Phys Lett 90:022101CrossRef Koo HC, Yi H, Ko JB et al (2007) Electrical spin injection and detection in an InAs quantum well. Appl Phys Lett 90:022101CrossRef
go back to reference Koo HC, Kwonj H, Eom J et al (2009) Control of spin precession in a spin-injected field effect transistor. Science 325:1515–1518CrossRef Koo HC, Kwonj H, Eom J et al (2009) Control of spin precession in a spin-injected field effect transistor. Science 325:1515–1518CrossRef
go back to reference Lou X, Adelmann C, Crooker SA, Crowell PA et al (2007) Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nat Phys 3:197–202CrossRef Lou X, Adelmann C, Crooker SA, Crowell PA et al (2007) Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nat Phys 3:197–202CrossRef
go back to reference Maruyama T, Shiota Y, Nozaki T et al (2009) Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat Nanotech 4:158–161CrossRef Maruyama T, Shiota Y, Nozaki T et al (2009) Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat Nanotech 4:158–161CrossRef
go back to reference Matsumoto Y, Murakami M, Shono T et al (2001) Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291:854–856CrossRef Matsumoto Y, Murakami M, Shono T et al (2001) Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291:854–856CrossRef
go back to reference Moodera JS, Kinder LR, Wong TM et al (1995) Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys Rev Lett 74:3273–3276CrossRef Moodera JS, Kinder LR, Wong TM et al (1995) Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys Rev Lett 74:3273–3276CrossRef
go back to reference Nakamura K, Shimabukura R, Fujiwara Y et al (2009) Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys Rev Lett 102:187201CrossRef Nakamura K, Shimabukura R, Fujiwara Y et al (2009) Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys Rev Lett 102:187201CrossRef
go back to reference Ohno Y, Young DK, Beschoten B et al (1999) Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402:790–792CrossRef Ohno Y, Young DK, Beschoten B et al (1999) Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402:790–792CrossRef
go back to reference Ohno H, Chiba D, Matsukura F et al (2000) Electric-field control of ferromagnetism. Nature 408:944–946CrossRef Ohno H, Chiba D, Matsukura F et al (2000) Electric-field control of ferromagnetism. Nature 408:944–946CrossRef
go back to reference Ovchinnikov IV, Wang KL (2009) Theory of electric-field-controlled surface ferromagnetic transition in metals. Phys Rev B 79:020402(R)CrossRef Ovchinnikov IV, Wang KL (2009) Theory of electric-field-controlled surface ferromagnetic transition in metals. Phys Rev B 79:020402(R)CrossRef
go back to reference Pippard AB (2009) Magnetoresistance in metals. Cambridge University Press, New York Pippard AB (2009) Magnetoresistance in metals. Cambridge University Press, New York
go back to reference Prejbeanu IL, Kerekes M, Sousa RC et al (2007) Thermally assisted MRAM. J Phys: Condens Matter 19:165218 Prejbeanu IL, Kerekes M, Sousa RC et al (2007) Thermally assisted MRAM. J Phys: Condens Matter 19:165218
go back to reference Prenat G, Jabeur K, Pendina GD et al (2015) Spintronics-based computing. In: Zhao W, Prenat G (eds) Spin orbit torque RAM SOT-MRAM for high speed and high reliability applications. Springer International Publishing, Switzerland, pp 145–157 Prenat G, Jabeur K, Pendina GD et al (2015) Spintronics-based computing. In: Zhao W, Prenat G (eds) Spin orbit torque RAM SOT-MRAM for high speed and high reliability applications. Springer International Publishing, Switzerland, pp 145–157
go back to reference Ralph DC, Cui YT, Liu LQ et al (2011) Spin-transfer torque in nanoscale magnetic devices. Philos Trans R Soc A 369:3617–3630CrossRef Ralph DC, Cui YT, Liu LQ et al (2011) Spin-transfer torque in nanoscale magnetic devices. Philos Trans R Soc A 369:3617–3630CrossRef
go back to reference Ramesh R, Spaldin NA (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21–29CrossRef Ramesh R, Spaldin NA (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21–29CrossRef
go back to reference Saitoh E, Ueda M, Miyajima H et al (2006) Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl Phys Lett 88:182509CrossRef Saitoh E, Ueda M, Miyajima H et al (2006) Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl Phys Lett 88:182509CrossRef
go back to reference Scheid M, Bercioux D, Richter K (2007) Zeeman ratchets: pure spin current generation in mesoscopic conductors with non-uniform magnetic fields. New J Phys 9:401CrossRef Scheid M, Bercioux D, Richter K (2007) Zeeman ratchets: pure spin current generation in mesoscopic conductors with non-uniform magnetic fields. New J Phys 9:401CrossRef
go back to reference Schmid H (1994) Multi-ferroic magnetoelectrics. Ferroelectrics 162:317–338CrossRef Schmid H (1994) Multi-ferroic magnetoelectrics. Ferroelectrics 162:317–338CrossRef
go back to reference Scogland T, Subramaniam B, Feng W (2013) The Green500 list: escapades to exascale. Comput Sci Res Dev 28:109–117CrossRef Scogland T, Subramaniam B, Feng W (2013) The Green500 list: escapades to exascale. Comput Sci Res Dev 28:109–117CrossRef
go back to reference Shiota Y, Nozaki T, Bonell F et al (2011) Induction of coherent magnetization switching in a few atomic layer of FeCo using voltage pulses. Nat Mater 11:39–43CrossRef Shiota Y, Nozaki T, Bonell F et al (2011) Induction of coherent magnetization switching in a few atomic layer of FeCo using voltage pulses. Nat Mater 11:39–43CrossRef
go back to reference Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1–L7CrossRef Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1–L7CrossRef
go back to reference Sort J, Baltz V, Garcia F et al (2005) Tailoring perpendicular exchange bias in [Pt/Co]-IrMn multilayers. Phys Rev B 71:054411CrossRef Sort J, Baltz V, Garcia F et al (2005) Tailoring perpendicular exchange bias in [Pt/Co]-IrMn multilayers. Phys Rev B 71:054411CrossRef
go back to reference Stolichnov I, Riester SWE, Trodahl HJ et al (2008) Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As. Nat Mater 7:464–467CrossRef Stolichnov I, Riester SWE, Trodahl HJ et al (2008) Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As. Nat Mater 7:464–467CrossRef
go back to reference Teyssedre G, Laurent C (2013) Advances in high-field insulating polymeric materials over the past 50 years. IEEE Electr Insul Mag 29:26–36CrossRef Teyssedre G, Laurent C (2013) Advances in high-field insulating polymeric materials over the past 50 years. IEEE Electr Insul Mag 29:26–36CrossRef
go back to reference Valenzuela SO, Tinkham M (2006) Direct electronic measurement of the spin Hall effect. Nature 442:176–179CrossRef Valenzuela SO, Tinkham M (2006) Direct electronic measurement of the spin Hall effect. Nature 442:176–179CrossRef
go back to reference Wang Y, Hu J, Lin Y et al (2010) Multiferroic magnetoelectric composite nanostructures. NPG Asia mater 2:61–68CrossRef Wang Y, Hu J, Lin Y et al (2010) Multiferroic magnetoelectric composite nanostructures. NPG Asia mater 2:61–68CrossRef
go back to reference Wang W, Li M, Hageman S et al (2012) Electric-field-assisted switching in magnetic tunnel junctions. Nat Mater 11:64–68CrossRef Wang W, Li M, Hageman S et al (2012) Electric-field-assisted switching in magnetic tunnel junctions. Nat Mater 11:64–68CrossRef
go back to reference Weisheit M, Fähler S, Marty A et al (2007) Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315:349–351CrossRef Weisheit M, Fähler S, Marty A et al (2007) Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315:349–351CrossRef
go back to reference Wiesendanger R, Güntherodt HJ (1990) Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys Rev Lett 65:247–250CrossRef Wiesendanger R, Güntherodt HJ (1990) Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys Rev Lett 65:247–250CrossRef
go back to reference Wolf SA, Awschalom DD, Buhrman RA et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495CrossRef Wolf SA, Awschalom DD, Buhrman RA et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495CrossRef
go back to reference Yamada Y, Ueno K, Fukumura T et al (2011) Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332:1065–1067CrossRef Yamada Y, Ueno K, Fukumura T et al (2011) Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332:1065–1067CrossRef
go back to reference Zhernenkov M, Fitzsimmons MR, Chlistunoff J, Majewshi J (2010) Electric-field modification of magnetism in a thin CoPd film. Phys Rev B 82:024420CrossRef Zhernenkov M, Fitzsimmons MR, Chlistunoff J, Majewshi J (2010) Electric-field modification of magnetism in a thin CoPd film. Phys Rev B 82:024420CrossRef
go back to reference Žutić I, Fabian J, Sarma SD (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323–410CrossRef Žutić I, Fabian J, Sarma SD (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323–410CrossRef
Metadata
Title
Towards Voltage-Driven Nano-Spintronics: A Review
Authors
Jin Zhang
Eva Pellicer
Jordi Sort
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-56979-6_5