Skip to main content
Top
Published in: Journal of Applied Mathematics and Computing 1-2/2020

10-06-2020 | Original Research

Trade-off between fear level induced by predator and infection rate among prey species

Authors: Dipesh Barman, Jyotirmoy Roy, Shariful Alam

Published in: Journal of Applied Mathematics and Computing | Issue 1-2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, an eco-epidemic predator–prey model has been considered where the reproduction of susceptible class of prey is assumed to be affected by the induced fear from predators. The positivity and boundedness of solutions along with existence criterion of the non-negative equilibrium points and their local stability analysis have been performed. Hopf-bifurcation analysis with direction around the co-existence equilibrium point is also performed and it is found that the interference competition rate leads the system to Hopf bifurcation and increases the stable co-existence of all the populations. Furthermore, the predator’s induced fear and infection rate among prey species importantly determine the dynamical complexity of the system. Analytical outcomes of the model system suggest that density of infected prey is directly proportional to the level of fear induced by the predator. Extensive numerical simulations have been carried out to validate all the analytical findings. Finally, Hopf-bifurcation curves of co-dimension two are drawn (with special empathises on interference competition rate) to detect various generalised Hopf-bifurcation and zero Hopf-bifurcation points and stability region of the system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alam, S.: Risk of disease-selective predation in an infected prey–predator system. J. Biol. Syst. 17(01), 111–124 (2009)MathSciNetMATH Alam, S.: Risk of disease-selective predation in an infected prey–predator system. J. Biol. Syst. 17(01), 111–124 (2009)MathSciNetMATH
2.
go back to reference Anholt, B.R., Werner, E.E.: Density-dependent consequences of induced behavior. In: The ecology and evolution of inducible defenses, pp 218–230 (1999) Anholt, B.R., Werner, E.E.: Density-dependent consequences of induced behavior. In: The ecology and evolution of inducible defenses, pp 218–230 (1999)
3.
go back to reference Bairagi, N., Roy, P.K., Chattopadhyay, J.: Role of infection on the stability of a predator–prey system with several response functions—a comparative study. J. Theor. Biol. 248(1), 10–25 (2007)MathSciNet Bairagi, N., Roy, P.K., Chattopadhyay, J.: Role of infection on the stability of a predator–prey system with several response functions—a comparative study. J. Theor. Biol. 248(1), 10–25 (2007)MathSciNet
4.
go back to reference Ball, S.L., Baker, R.L.: Predator-induced life history changes: antipredator behavior costs or facultative life history shifts? Ecology 77(4), 1116–1124 (1996) Ball, S.L., Baker, R.L.: Predator-induced life history changes: antipredator behavior costs or facultative life history shifts? Ecology 77(4), 1116–1124 (1996)
5.
go back to reference Belvisi, S., Venturino, E.: An ecoepidemic model with diseased predators and prey group defense. Simul. Model. Pract. Theory 34, 144–155 (2013) Belvisi, S., Venturino, E.: An ecoepidemic model with diseased predators and prey group defense. Simul. Model. Pract. Theory 34, 144–155 (2013)
6.
go back to reference Benard, M.F.: Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 35, 651–673 (2004) Benard, M.F.: Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 35, 651–673 (2004)
7.
go back to reference Chattopadhyay, J., Pal, S., Abdllaoui, A.E.: Classical predator–prey system with infection of prey population—a mathematical model. Math. Methods Appl. Sci. 26(14), 1211–1222 (2003)MathSciNetMATH Chattopadhyay, J., Pal, S., Abdllaoui, A.E.: Classical predator–prey system with infection of prey population—a mathematical model. Math. Methods Appl. Sci. 26(14), 1211–1222 (2003)MathSciNetMATH
8.
go back to reference Cresswell, W.: Predation in bird populations. J. Ornithol. 152(1), 251–263 (2011) Cresswell, W.: Predation in bird populations. J. Ornithol. 152(1), 251–263 (2011)
9.
go back to reference Curio, E.: The Ethology of Predation, vol. 7. Springer, New York (2012) Curio, E.: The Ethology of Predation, vol. 7. Springer, New York (2012)
10.
go back to reference Delgado, M., Molina-Becerra, M., Suárez, A.: Analysis of an age-structured predator–prey model with disease in the prey. Nonlinear Anal. Real World Appl. 7(4), 853–871 (2006)MathSciNetMATH Delgado, M., Molina-Becerra, M., Suárez, A.: Analysis of an age-structured predator–prey model with disease in the prey. Nonlinear Anal. Real World Appl. 7(4), 853–871 (2006)MathSciNetMATH
11.
go back to reference Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Trans. Math. Softw. (TOMS) 29(2), 141–164 (2003)MathSciNetMATH Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Trans. Math. Softw. (TOMS) 29(2), 141–164 (2003)MathSciNetMATH
12.
go back to reference Dorset, E.E., Sakaluk, S.K., Thompson, C.F.: Behavioral plasticity in response to perceived predation risk in breeding house wrens. Evol. Biol. 44(2), 227–239 (2017) Dorset, E.E., Sakaluk, S.K., Thompson, C.F.: Behavioral plasticity in response to perceived predation risk in breeding house wrens. Evol. Biol. 44(2), 227–239 (2017)
13.
go back to reference Evans, J.P., Gasparini, C., Pilastro, A.: Female guppies shorten brood retention in response to predator cues. Behav. Ecol. Sociobiol. 61(5), 719–727 (2007) Evans, J.P., Gasparini, C., Pilastro, A.: Female guppies shorten brood retention in response to predator cues. Behav. Ecol. Sociobiol. 61(5), 719–727 (2007)
14.
go back to reference Gao, X., Pan, Q., He, M., Kang, Y.: A predator–prey model with diseases in both prey and predator. Phys. A 392(23), 5898–5906 (2013)MathSciNetMATH Gao, X., Pan, Q., He, M., Kang, Y.: A predator–prey model with diseases in both prey and predator. Phys. A 392(23), 5898–5906 (2013)MathSciNetMATH
15.
go back to reference Greenhalgh, D., Haque, M.: A predator–prey model with disease in the prey species only. Math. Methods Appl. Sci. 30(8), 911–929 (2007)MathSciNetMATH Greenhalgh, D., Haque, M.: A predator–prey model with disease in the prey species only. Math. Methods Appl. Sci. 30(8), 911–929 (2007)MathSciNetMATH
16.
go back to reference Harvey, E.L., Jeong, H.J., Menden-Deuer, S.: Avoidance and attraction: chemical cues influence predator–prey interactions of planktonic protists. Limnol. Oceanogr. 58(4), 1176–1184 (2013) Harvey, E.L., Jeong, H.J., Menden-Deuer, S.: Avoidance and attraction: chemical cues influence predator–prey interactions of planktonic protists. Limnol. Oceanogr. 58(4), 1176–1184 (2013)
17.
go back to reference Hassard, B.D., Hassard, B., Kazarinoff, N.D., Wan, Y.H., Wan, Y.W.: Theory and Applications of Hopf Bifurcation, vol. 41. CUP Archive (1981) Hassard, B.D., Hassard, B., Kazarinoff, N.D., Wan, Y.H., Wan, Y.W.: Theory and Applications of Hopf Bifurcation, vol. 41. CUP Archive (1981)
18.
go back to reference Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721 (1927) Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721 (1927)
19.
go back to reference Kooi, B.W., Venturino, E.: Ecoepidemic predator–prey model with feeding satiation, prey herd behavior and abandoned infected prey. Math. Biosci. 274, 58–72 (2016)MathSciNetMATH Kooi, B.W., Venturino, E.: Ecoepidemic predator–prey model with feeding satiation, prey herd behavior and abandoned infected prey. Math. Biosci. 274, 58–72 (2016)MathSciNetMATH
20.
go back to reference Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer, New York (2013) Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer, New York (2013)
21.
go back to reference Li, J., Gao, W.: Analysis of a prey–predator model with disease in prey. Appl. Math. Comput. 217(8), 4024–4035 (2010)MathSciNetMATH Li, J., Gao, W.: Analysis of a prey–predator model with disease in prey. Appl. Math. Comput. 217(8), 4024–4035 (2010)MathSciNetMATH
22.
go back to reference Liu, M., Jin, Z., Haque, M.: An impulsive predator–prey model with communicable disease in the prey species only. Nonlinear Anal. Real World Appl. 10(5), 3098–3111 (2009)MathSciNetMATH Liu, M., Jin, Z., Haque, M.: An impulsive predator–prey model with communicable disease in the prey species only. Nonlinear Anal. Real World Appl. 10(5), 3098–3111 (2009)MathSciNetMATH
23.
go back to reference Maerz, J.C., Panebianco, N.L., Madison, D.M.: Effects of predator chemical cues and behavioral biorhythms on foraging, activity of terrestrial salamanders. J. Chem. Ecol. 27(7), 1333–1344 (2001) Maerz, J.C., Panebianco, N.L., Madison, D.M.: Effects of predator chemical cues and behavioral biorhythms on foraging, activity of terrestrial salamanders. J. Chem. Ecol. 27(7), 1333–1344 (2001)
24.
go back to reference Pal, S., Pal, N., Samanta, S., Chattopadhyay, J.: Effect of hunting cooperation and fear in a predator–prey model. Ecol. Complex. 39, 100770 (2019) Pal, S., Pal, N., Samanta, S., Chattopadhyay, J.: Effect of hunting cooperation and fear in a predator–prey model. Ecol. Complex. 39, 100770 (2019)
25.
go back to reference Panday, P., Pal, N., Samanta, S., Chattopadhyay, J.: A three species food chain model with fear induced trophic cascade. Int. J. Appl. Comput. Math. 5(4), 100 (2019)MathSciNetMATH Panday, P., Pal, N., Samanta, S., Chattopadhyay, J.: A three species food chain model with fear induced trophic cascade. Int. J. Appl. Comput. Math. 5(4), 100 (2019)MathSciNetMATH
26.
go back to reference Persons, M.H., Walker, S.E., Rypstra, A.L., Marshall, S.D.: Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (araneae: Lycosidae). Anim. Behav. 61(1), 43–51 (2001) Persons, M.H., Walker, S.E., Rypstra, A.L., Marshall, S.D.: Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (araneae: Lycosidae). Anim. Behav. 61(1), 43–51 (2001)
29.
go back to reference Ruell, E., Handelsman, C., Hawkins, C., Sofaer, H., Ghalambor, C., Angeloni, L.: Fear, food and sexual ornamentation: plasticity of colour development in trinidadian guppies. Proc. R. Soc. B Biol. Sci. 280(1758), 20122019 (2013) Ruell, E., Handelsman, C., Hawkins, C., Sofaer, H., Ghalambor, C., Angeloni, L.: Fear, food and sexual ornamentation: plasticity of colour development in trinidadian guppies. Proc. R. Soc. B Biol. Sci. 280(1758), 20122019 (2013)
30.
go back to reference Sasmal, S.K.: Population dynamics with multiple allee effects induced by fear factors—a mathematical study on prey–predator interactions. Appl. Math. Model. 64, 1–14 (2018)MathSciNetMATH Sasmal, S.K.: Population dynamics with multiple allee effects induced by fear factors—a mathematical study on prey–predator interactions. Appl. Math. Model. 64, 1–14 (2018)MathSciNetMATH
31.
go back to reference Sha, A., Samanta, S., Martcheva, M., Chattopadhyay, J.: Backward bifurcation, oscillations and chaos in an eco-epidemiological model with fear effect. J. Biol. Dyn. 13(1), 301–327 (2019)MathSciNetMATH Sha, A., Samanta, S., Martcheva, M., Chattopadhyay, J.: Backward bifurcation, oscillations and chaos in an eco-epidemiological model with fear effect. J. Biol. Dyn. 13(1), 301–327 (2019)MathSciNetMATH
32.
go back to reference Sinha, S., Misra, O., Dhar, J.: Modelling a predator–prey system with infected prey in polluted environment. Appl. Math. Model. 34(7), 1861–1872 (2010)MathSciNetMATH Sinha, S., Misra, O., Dhar, J.: Modelling a predator–prey system with infected prey in polluted environment. Appl. Math. Model. 34(7), 1861–1872 (2010)MathSciNetMATH
33.
go back to reference Thiemann, G.W., Wassersug, R.J.: Patterns and consequences of behavioural responses to predators and parasites in rana tadpoles. Biol. J. Linn. Soc. 71(3), 513–528 (2000) Thiemann, G.W., Wassersug, R.J.: Patterns and consequences of behavioural responses to predators and parasites in rana tadpoles. Biol. J. Linn. Soc. 71(3), 513–528 (2000)
34.
go back to reference Venturino, E.: The influence of disease on Lotka-Volterra system. Rockymount J. J. Math. 24, 381–402 (1994)MathSciNetMATH Venturino, E.: The influence of disease on Lotka-Volterra system. Rockymount J. J. Math. 24, 381–402 (1994)MathSciNetMATH
35.
go back to reference Vinterstare, J., Hegemann, A., Nilsson, P.A., Hulthén, K., Brönmark, C.: Defence versus defence: are crucian carp trading off immune function against predator-induced morphology? J. Anim. Ecol. (2019) Vinterstare, J., Hegemann, A., Nilsson, P.A., Hulthén, K., Brönmark, C.: Defence versus defence: are crucian carp trading off immune function against predator-induced morphology? J. Anim. Ecol. (2019)
36.
go back to reference Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)MathSciNetMATH Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)MathSciNetMATH
37.
go back to reference Wang, X., Zou, X.: Modeling the fear effect in predator–prey interactions with adaptive avoidance of predators. Bull. Math. Biol. 79(6), 1325–1359 (2017)MathSciNetMATH Wang, X., Zou, X.: Modeling the fear effect in predator–prey interactions with adaptive avoidance of predators. Bull. Math. Biol. 79(6), 1325–1359 (2017)MathSciNetMATH
38.
go back to reference Werner, E.E., Peacor, S.D.: A review of trait-mediated indirect interactions in ecological communities. Ecology 84(5), 1083–1100 (2003) Werner, E.E., Peacor, S.D.: A review of trait-mediated indirect interactions in ecological communities. Ecology 84(5), 1083–1100 (2003)
39.
go back to reference Wisenden, B.D.: Chemically mediated strategies to counter predation. In: Collin, S.P., Marshall, N.J. (eds.) Sensory processing in aquatic environments, pp. 236–251. Springer, New York, NY (2003) Wisenden, B.D.: Chemically mediated strategies to counter predation. In: Collin, S.P., Marshall, N.J. (eds.) Sensory processing in aquatic environments, pp. 236–251. Springer, New York, NY (2003)
40.
go back to reference Xiao, Y., Chen, L.: Modeling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171(1), 59–82 (2001)MathSciNetMATH Xiao, Y., Chen, L.: Modeling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171(1), 59–82 (2001)MathSciNetMATH
41.
go back to reference Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011) Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011)
Metadata
Title
Trade-off between fear level induced by predator and infection rate among prey species
Authors
Dipesh Barman
Jyotirmoy Roy
Shariful Alam
Publication date
10-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Journal of Applied Mathematics and Computing / Issue 1-2/2020
Print ISSN: 1598-5865
Electronic ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-020-01372-1

Other articles of this Issue 1-2/2020

Journal of Applied Mathematics and Computing 1-2/2020 Go to the issue

Premium Partner