Skip to main content
Top
Published in: Journal of Applied Mathematics and Computing 1-2/2020

16-06-2020 | Original Research

The effect of the defensive strategy taken by the prey on predator–prey interaction

Authors: Fethi Souna, Abdelkader Lakmeche, Salih Djilali

Published in: Journal of Applied Mathematics and Computing | Issue 1-2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we scrutinize a delayed predator-model for the purpose of studying the impact of the strategy considered by the prey population on the evolution of the studied species. The main presumption is to consider the existence of two prey types with different behaviors. The first, has a social behavior and takes the advantage of living in group for the purpose of defending each others, and the second one has a solitary behavior. A mathematical approach is used to study this effect, where the local stability and bifurcation analysis are examined. Indeed, we establish that the system under consideration has a rich dynamics such as Hopf bifurcation in both the absence and the presence of time lags. Further the stability of the periodic solution generated by the presence of the time lags are discussed using the normal form. Some numerical simulations are provided for ensuring the obtained mathematical results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ajraldi, V., Pittavino, M., Venturino, E.: Modeling herd behavior in population systems. Nonlinear Anal. Real World Appl. 12, 2319–2338 (2011)MathSciNetCrossRef Ajraldi, V., Pittavino, M., Venturino, E.: Modeling herd behavior in population systems. Nonlinear Anal. Real World Appl. 12, 2319–2338 (2011)MathSciNetCrossRef
2.
go back to reference Bailey, N.J.T.: The Mathematical Theory of Infectious Disease and Its Applications. Griffin, London (1975) Bailey, N.J.T.: The Mathematical Theory of Infectious Disease and Its Applications. Griffin, London (1975)
3.
go back to reference Beretta, E., Kuang, Y.: Global analysis in some delayed ratio-dependent predator–prey systems. Nonlinear Anal. 32, 381–408 (1998)MathSciNetCrossRef Beretta, E., Kuang, Y.: Global analysis in some delayed ratio-dependent predator–prey systems. Nonlinear Anal. 32, 381–408 (1998)MathSciNetCrossRef
4.
go back to reference Berryman, A.A.: The origins and evolution of predator–prey theory. Ecology 73, 1530–1535 (1992)CrossRef Berryman, A.A.: The origins and evolution of predator–prey theory. Ecology 73, 1530–1535 (1992)CrossRef
5.
go back to reference Birkhoff, G., Rota, G.-C.: Ordinary Differential Equations, 3rd edn. Wiley, New York (1978)MATH Birkhoff, G., Rota, G.-C.: Ordinary Differential Equations, 3rd edn. Wiley, New York (1978)MATH
6.
go back to reference Braza, P.A.: Predator–prey dynamics with square root functional responses. Nonlinear Anal. Real World Appl. 13, 1837–1843 (2012)MathSciNetCrossRef Braza, P.A.: Predator–prey dynamics with square root functional responses. Nonlinear Anal. Real World Appl. 13, 1837–1843 (2012)MathSciNetCrossRef
7.
go back to reference Banerjee, M., Kooi, B.W., Venturino, E.: An ecoepidemic model with prey herd behavior and predator feeding saturation response on both healthy and diseased prey. Math. Models Nat. Phenom. 12(2), 133–161 (2017)MathSciNetCrossRef Banerjee, M., Kooi, B.W., Venturino, E.: An ecoepidemic model with prey herd behavior and predator feeding saturation response on both healthy and diseased prey. Math. Models Nat. Phenom. 12(2), 133–161 (2017)MathSciNetCrossRef
8.
go back to reference Bulai, I.M., Venturino, E.: Shape effects on herd behavior in ecological interacting population models. Math. Comput. Simul. 141, 40–55 (2017)MathSciNetCrossRef Bulai, I.M., Venturino, E.: Shape effects on herd behavior in ecological interacting population models. Math. Comput. Simul. 141, 40–55 (2017)MathSciNetCrossRef
9.
go back to reference Chattopadhyay, J., Chatterjee, S., Venturino, E.: Patchy agglomeration as a transition from monospecies to recurrent plankton blooms. J. Theor. Biol. 253, 289–295 (2008)MathSciNetCrossRef Chattopadhyay, J., Chatterjee, S., Venturino, E.: Patchy agglomeration as a transition from monospecies to recurrent plankton blooms. J. Theor. Biol. 253, 289–295 (2008)MathSciNetCrossRef
10.
go back to reference Chinnathambi, R., Rihan, F.A.: Stability of fractional-order prey–predator system with time-delay and Monod-Haldane functional response. Nonlinear Dyn. 92, 1637–1648 (2018)CrossRef Chinnathambi, R., Rihan, F.A.: Stability of fractional-order prey–predator system with time-delay and Monod-Haldane functional response. Nonlinear Dyn. 92, 1637–1648 (2018)CrossRef
11.
go back to reference Cosner, C., DeAngelis, D.L.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75 (1999)CrossRef Cosner, C., DeAngelis, D.L.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75 (1999)CrossRef
14.
go back to reference Djilali, S.: Herd behavior in a predator–prey model with spatial diffusion: bifurcation analysis and Turing instability. J. Appl. Math. Comput. 58(1–2), 125–149 (2017)MathSciNetMATH Djilali, S.: Herd behavior in a predator–prey model with spatial diffusion: bifurcation analysis and Turing instability. J. Appl. Math. Comput. 58(1–2), 125–149 (2017)MathSciNetMATH
15.
go back to reference Djilali, S., Touaoula, T.M., Miri, S.E.H.: A Heroin epidemic model: very general non linear incidence, treat-age, and global stability. Acta Appl. Math. 152(1), 171–194 (2017)MathSciNetCrossRef Djilali, S., Touaoula, T.M., Miri, S.E.H.: A Heroin epidemic model: very general non linear incidence, treat-age, and global stability. Acta Appl. Math. 152(1), 171–194 (2017)MathSciNetCrossRef
16.
go back to reference Djilali, S.: Impact of prey herd shape on the predator–prey interaction. Chaos Solitons Fractals 120, 139–148 (2019)MathSciNetCrossRef Djilali, S.: Impact of prey herd shape on the predator–prey interaction. Chaos Solitons Fractals 120, 139–148 (2019)MathSciNetCrossRef
17.
go back to reference Djilali, S.: Effect of herd shape in a diffusive predator–prey model with time delay. J. Appl. Anal. Comput. 9(2), 638–654 (2019)MathSciNet Djilali, S.: Effect of herd shape in a diffusive predator–prey model with time delay. J. Appl. Anal. Comput. 9(2), 638–654 (2019)MathSciNet
21.
go back to reference Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: Epidemic Models, Their Structure and Relation to Data. Cambridge University Press, Cambridge (1994) Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: Epidemic Models, Their Structure and Relation to Data. Cambridge University Press, Cambridge (1994)
23.
go back to reference de Assis, R.A., Pazim, R., Malavazi, M.C., da C. Petry, P.P., de Assis, L.M.E., Venturino, E.: A mathematical model to describe the herd behaviour considering group defense. AMNS 5(1), 11–24 (2020)MathSciNetCrossRef de Assis, R.A., Pazim, R., Malavazi, M.C., da C. Petry, P.P., de Assis, L.M.E., Venturino, E.: A mathematical model to describe the herd behaviour considering group defense. AMNS 5(1), 11–24 (2020)MathSciNetCrossRef
25.
go back to reference Gimmelli, G., Kooi, B.W., Venturino, E.: Ecoepidemic models with prey group defense and feeding saturation. Ecol. Complex. 22, 50–58 (2015)CrossRef Gimmelli, G., Kooi, B.W., Venturino, E.: Ecoepidemic models with prey group defense and feeding saturation. Ecol. Complex. 22, 50–58 (2015)CrossRef
26.
go back to reference Gopalsamy, K.: Stability and Oscillation in Delay Differential Equation of Population Dynamics. Kluwer Academic, Dordrecht (1992)CrossRef Gopalsamy, K.: Stability and Oscillation in Delay Differential Equation of Population Dynamics. Kluwer Academic, Dordrecht (1992)CrossRef
27.
go back to reference Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)MATH Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)MATH
28.
go back to reference Kooi, B.W., Venturino, E.: Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey. Math. Biosci. 274, 58–72 (2016)MathSciNetCrossRef Kooi, B.W., Venturino, E.: Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey. Math. Biosci. 274, 58–72 (2016)MathSciNetCrossRef
30.
go back to reference Kuang, Y.: Delay Differential Equation with Applications in Population Dynamics. Academic Press, New York (1993)MATH Kuang, Y.: Delay Differential Equation with Applications in Population Dynamics. Academic Press, New York (1993)MATH
31.
go back to reference Lotka, A.J.: Relation between birth rates and death rates. Science 26, 21–22 (1907)CrossRef Lotka, A.J.: Relation between birth rates and death rates. Science 26, 21–22 (1907)CrossRef
32.
go back to reference Laurie, H., Venturino, E., Bulai, I.M.: Herding induced by encounter rate, with predator pressure influencing prey response. In: Aguiar, M., Braumann, C., Kooi, B., Pugliese, A., Stollenwerk, N., Venturino, E. (eds.) Current Trends in Dynamical Systems in Biology and Natural Sciences. SIMAI series. Springer, Berlin (2019) Laurie, H., Venturino, E., Bulai, I.M.: Herding induced by encounter rate, with predator pressure influencing prey response. In: Aguiar, M., Braumann, C., Kooi, B., Pugliese, A., Stollenwerk, N., Venturino, E. (eds.) Current Trends in Dynamical Systems in Biology and Natural Sciences. SIMAI series. Springer, Berlin (2019)
33.
go back to reference Laurie, H., Venturino, E.: A two-predator one-prey model of population dynamics influenced by herd behaviour of the prey. Theor. Biol. Forum 111(1–2), 27–47 (2018) Laurie, H., Venturino, E.: A two-predator one-prey model of population dynamics influenced by herd behaviour of the prey. Theor. Biol. Forum 111(1–2), 27–47 (2018)
35.
go back to reference Maiti, A.P., Dubey, B., Tushar, J.: A delayed prey–predator model with Crowley-Martin-type functional response including prey refuge. Bull. Math. Biol. 40, 5792–5809 (2017)MathSciNetMATH Maiti, A.P., Dubey, B., Tushar, J.: A delayed prey–predator model with Crowley-Martin-type functional response including prey refuge. Bull. Math. Biol. 40, 5792–5809 (2017)MathSciNetMATH
36.
go back to reference Malthus, T.R.: An Essay on the Principle of Population. Penguin, Harmondsworth (1798) Malthus, T.R.: An Essay on the Principle of Population. Penguin, Harmondsworth (1798)
37.
go back to reference May, R.M.: Time delay versus stability in population models with two and three trophic levels. Ecology 4, 315–325 (1973)CrossRef May, R.M.: Time delay versus stability in population models with two and three trophic levels. Ecology 4, 315–325 (1973)CrossRef
38.
go back to reference Meng, X.Y., Huo, H.F., Xiang, H.: Hopf bifurcation in a three-species system with delays. J. Appl. Math. Comput. 35, 635–661 (2011)MathSciNetCrossRef Meng, X.Y., Huo, H.F., Xiang, H.: Hopf bifurcation in a three-species system with delays. J. Appl. Math. Comput. 35, 635–661 (2011)MathSciNetCrossRef
39.
go back to reference Melchionda, D., Pastacaldi, E., Perri, C., Banerjee, M., Venturino, E.: Social behavior-induced multistability in minimal competitive ecosystems. J. Theor. Biol. 439, 24–38 (2018)MathSciNetCrossRef Melchionda, D., Pastacaldi, E., Perri, C., Banerjee, M., Venturino, E.: Social behavior-induced multistability in minimal competitive ecosystems. J. Theor. Biol. 439, 24–38 (2018)MathSciNetCrossRef
40.
go back to reference Ruan, S., Wei, J.: On the zeros of third degree exponential polynomial with applications to a delayed model for the control of testosteron. IMA J. Math. Appl. Med. Biol. 18, 41–52 (2001)CrossRef Ruan, S., Wei, J.: On the zeros of third degree exponential polynomial with applications to a delayed model for the control of testosteron. IMA J. Math. Appl. Med. Biol. 18, 41–52 (2001)CrossRef
41.
go back to reference Rudin, W.: Analyse réelle et complexe. Dunod, paris (1998) Rudin, W.: Analyse réelle et complexe. Dunod, paris (1998)
43.
go back to reference Volterra, V.: Sui tentativi di applicazione della matematiche alle scienze biologiche esociali. G. Econ. 23, 436–458 (1901) Volterra, V.: Sui tentativi di applicazione della matematiche alle scienze biologiche esociali. G. Econ. 23, 436–458 (1901)
44.
go back to reference Venturino, E.: A mimimal model for ecoepidemics with group defense. J. Biol. Syst. 19, 763–785 (2011)CrossRef Venturino, E.: A mimimal model for ecoepidemics with group defense. J. Biol. Syst. 19, 763–785 (2011)CrossRef
45.
go back to reference Venturino, E., Petrovskii, S.: Spatiotemporal behavior of a prey-predator system with a group defense for prey. Ecol. Complex. 14, 37–47 (2013)CrossRef Venturino, E., Petrovskii, S.: Spatiotemporal behavior of a prey-predator system with a group defense for prey. Ecol. Complex. 14, 37–47 (2013)CrossRef
46.
go back to reference Verhulst, P.F.: Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 10, 113–121 (1838) Verhulst, P.F.: Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 10, 113–121 (1838)
47.
go back to reference Xu, C., Yuan, S., Zhang, T.: Global dynamics of a predator–prey model with defense mechanism for prey. Appl. Math. Lett. 62, 42–48 (2016)MathSciNetCrossRef Xu, C., Yuan, S., Zhang, T.: Global dynamics of a predator–prey model with defense mechanism for prey. Appl. Math. Lett. 62, 42–48 (2016)MathSciNetCrossRef
48.
go back to reference Yang, R., Ma, J.: Analysis of a diffusive predator–prey system with anti-predator behaviour and maturation delay. Chaos Solitons Fractals 109, 128–139 (2018)MathSciNetCrossRef Yang, R., Ma, J.: Analysis of a diffusive predator–prey system with anti-predator behaviour and maturation delay. Chaos Solitons Fractals 109, 128–139 (2018)MathSciNetCrossRef
49.
go back to reference Zhao, J., Tian, J.P., Wei, J.J.: Minimal model of plankton systems revisited with spatial diffusion and maturation delay. Bull. Math. Biol. 78, 381–412 (2016)MathSciNetCrossRef Zhao, J., Tian, J.P., Wei, J.J.: Minimal model of plankton systems revisited with spatial diffusion and maturation delay. Bull. Math. Biol. 78, 381–412 (2016)MathSciNetCrossRef
Metadata
Title
The effect of the defensive strategy taken by the prey on predator–prey interaction
Authors
Fethi Souna
Abdelkader Lakmeche
Salih Djilali
Publication date
16-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Journal of Applied Mathematics and Computing / Issue 1-2/2020
Print ISSN: 1598-5865
Electronic ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-020-01373-0

Other articles of this Issue 1-2/2020

Journal of Applied Mathematics and Computing 1-2/2020 Go to the issue

Premium Partner