Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 10/2022

02-03-2022 | Research Article-Civil Engineering

Traditional Cementitious Materials for Thermal Insulation

Authors: Alaa M. Rashad, Ghada M. F. Essa, W. M. Morsi

Published in: Arabian Journal for Science and Engineering | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The increasing requirement for indoor thermal comfort in the building sector leads to an increased demand for new thermal insulating materials. Developing materials capable to meet technical and environmental requirements are a hot topic. Thus, in this study, the authors tried to manufacture an insulating binder free from Portland cement (PC) or foaming agent. This insulating binder based on traditional cementitious materials such as metakaolin (MK), fly ash (FA), hydrated lime and gypsum. To increase its insulation efficiency, different proportions of expanded perlite (EP) and silica fume (SF) were incorporated. The bulk density, compressive strength, thermal conductivity, total porosity and thermal resistance were determined. X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to analyze the results. The results showed that the combination of suitable ratios of FA, lime, gypsum and MK can produce good thermal insulating material with thermal conductivity of 0.331 W/mK associated with good compressive strength. The insulation efficiency of this material can be increased with the incorporation of EP. For more and more insulation efficiency, MK was replaced with SF. In short, these new insulation materials exhibited suitable compressive strength associated with low thermal conductivity (0.331–0.095 W/mK), low density (1275.1–417.3 kg/m3) and high porosity (54.67–81.25%). It is recommended to use these new type of insulation materials in different thermal insulation purposes, of which they satisfied the requirement of Egyptian Energy Code (ECP 306–2005).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu, T.; Tan, Z.; Xu, C.; Chen, H.; Li, Z.: Study on deep reinforcement learning techniques for building energy consumption forecasting. Energy Build. 208, 109675 (2020)CrossRef Liu, T.; Tan, Z.; Xu, C.; Chen, H.; Li, Z.: Study on deep reinforcement learning techniques for building energy consumption forecasting. Energy Build. 208, 109675 (2020)CrossRef
2.
go back to reference Xu, X.; Sun, S.; Liu, W.; García, E.H.; He, L.; Cai, Q.; Xu, S.; Wang, J.; Zhu, J.: The cooling and energy saving effect of landscape design parameters of urban park in summer: a case of Beijing, China. Energy Build. 149, 91–100 (2017)CrossRef Xu, X.; Sun, S.; Liu, W.; García, E.H.; He, L.; Cai, Q.; Xu, S.; Wang, J.; Zhu, J.: The cooling and energy saving effect of landscape design parameters of urban park in summer: a case of Beijing, China. Energy Build. 149, 91–100 (2017)CrossRef
3.
go back to reference Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A.: A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 43, 843–862 (2015)CrossRef Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A.: A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 43, 843–862 (2015)CrossRef
4.
go back to reference Lamy-Mendes, A.; Pontinha, A.D.R.; Alves, P.; Santos, P.; Durães, L.: Progress in silica aerogel-containing materials for buildings’ thermal insulation. Construct. Build. Mater. 286, 122815 (2021)CrossRef Lamy-Mendes, A.; Pontinha, A.D.R.; Alves, P.; Santos, P.; Durães, L.: Progress in silica aerogel-containing materials for buildings’ thermal insulation. Construct. Build. Mater. 286, 122815 (2021)CrossRef
5.
go back to reference Aditya, L.; Mahlia, T.; Rismanchi, B.; Ng, H.; Hasan, M.; Metselaar, H.; Muraza, O.; Aditiya, H.: A review on insulation materials for energy conservation in buildings. Renew. Sustain. Energy Rev. 73, 1352–1365 (2017)CrossRef Aditya, L.; Mahlia, T.; Rismanchi, B.; Ng, H.; Hasan, M.; Metselaar, H.; Muraza, O.; Aditiya, H.: A review on insulation materials for energy conservation in buildings. Renew. Sustain. Energy Rev. 73, 1352–1365 (2017)CrossRef
6.
go back to reference Hu, R.; Ma, A.; Wang, Y.: Transient hot wire measures thermophysical properties of organic foam thermal insulation materials. Exp. Thermal Fluid Sci. 98, 674–682 (2018)CrossRef Hu, R.; Ma, A.; Wang, Y.: Transient hot wire measures thermophysical properties of organic foam thermal insulation materials. Exp. Thermal Fluid Sci. 98, 674–682 (2018)CrossRef
7.
go back to reference Rashad, A.M.: A synopsis about perlite as building material–a best practice guide for civil engineer. Constr. Build. Mater. 121, 338–353 (2016)CrossRef Rashad, A.M.: A synopsis about perlite as building material–a best practice guide for civil engineer. Constr. Build. Mater. 121, 338–353 (2016)CrossRef
8.
go back to reference A.M. Rashad, A short manual on natural pumice as a lightweight aggregate. J. Build. Eng. (2019) 100802. A.M. Rashad, A short manual on natural pumice as a lightweight aggregate. J. Build. Eng. (2019) 100802.
9.
go back to reference Rashad, A.M.: Lightweight expanded clay aggregate as a building material: an overview. Constr. Build. Mater. 170, 757–775 (2018)CrossRef Rashad, A.M.: Lightweight expanded clay aggregate as a building material: an overview. Constr. Build. Mater. 170, 757–775 (2018)CrossRef
10.
go back to reference Rashad, A.M.: Vermiculite as a construction material: a short guide for Civil Engineer. Constr. Build. Mater. 125, 53–62 (2016)CrossRef Rashad, A.M.: Vermiculite as a construction material: a short guide for Civil Engineer. Constr. Build. Mater. 125, 53–62 (2016)CrossRef
11.
go back to reference Hodhod, O.; Rashad, A.; Abdel-Razek, M.; Ragab, A.: Coating protection of loaded RC columns to resist elevated temperature. Fire Saf. J. 44(2), 241–249 (2009)CrossRef Hodhod, O.; Rashad, A.; Abdel-Razek, M.; Ragab, A.: Coating protection of loaded RC columns to resist elevated temperature. Fire Saf. J. 44(2), 241–249 (2009)CrossRef
12.
go back to reference Rashad, A.M.: Possibility of using metakaolin as thermal insulation material. Int. J. Thermophys. 38(8), 1–11 (2017)CrossRef Rashad, A.M.: Possibility of using metakaolin as thermal insulation material. Int. J. Thermophys. 38(8), 1–11 (2017)CrossRef
13.
go back to reference A.M. Rashad, Possibility of producing thermal insulation materials from cementitious materials without foaming agent or lightweight aggregate. Environ. Sci. Pollut. Res. (2021) 1–10 A.M. Rashad, Possibility of producing thermal insulation materials from cementitious materials without foaming agent or lightweight aggregate. Environ. Sci. Pollut. Res. (2021) 1–10
14.
go back to reference Phavongkham, V.; Wattanasiriwech, S.; Cheng, T.-W.; Wattanasiriwech, D.: Effects of surfactant on thermo-mechanical behavior of geopolymer foam paste made with sodium perborate foaming agent. Construct. Build. Mater. 243, 118282 (2020)CrossRef Phavongkham, V.; Wattanasiriwech, S.; Cheng, T.-W.; Wattanasiriwech, D.: Effects of surfactant on thermo-mechanical behavior of geopolymer foam paste made with sodium perborate foaming agent. Construct. Build. Mater. 243, 118282 (2020)CrossRef
15.
go back to reference Andrew, R.M.: Global CO 2 emissions from cement production. Earth Syst. Sci. Data 10(1), 195 (2018)CrossRef Andrew, R.M.: Global CO 2 emissions from cement production. Earth Syst. Sci. Data 10(1), 195 (2018)CrossRef
16.
go back to reference H. Lee, Intergovernmental Panel on Climate Change, (2007). H. Lee, Intergovernmental Panel on Climate Change, (2007).
17.
go back to reference Wang, L.; Yang, H.; Dong, Y.; Chen, E.; Tang, S.: Environmental evaluation, hydration, pore structure, volume deformation and abrasion resistance of low heat Portland (LHP) cement-based materials. J. Clean. Prod. 203, 540–558 (2018)CrossRef Wang, L.; Yang, H.; Dong, Y.; Chen, E.; Tang, S.: Environmental evaluation, hydration, pore structure, volume deformation and abrasion resistance of low heat Portland (LHP) cement-based materials. J. Clean. Prod. 203, 540–558 (2018)CrossRef
18.
go back to reference Rashad, A.M.: A comprehensive overview about the influence of different additives on the properties of alkali-activated slag: a guide for civil engineer. Constr. Build. Mater. 47, 29–55 (2013)CrossRef Rashad, A.M.: A comprehensive overview about the influence of different additives on the properties of alkali-activated slag: a guide for civil engineer. Constr. Build. Mater. 47, 29–55 (2013)CrossRef
19.
go back to reference Cao, W.; Yi, W.; Yin, S.; Peng, J.; Li, J.: A novel low-density thermal insulation gypsum reinforced with superplasticizers. Constr. Build. Mater. 278, 122421 (2021)CrossRef Cao, W.; Yi, W.; Yin, S.; Peng, J.; Li, J.: A novel low-density thermal insulation gypsum reinforced with superplasticizers. Constr. Build. Mater. 278, 122421 (2021)CrossRef
20.
go back to reference Gencel, O.; del Coz-Diaz, J.J.; Sutcu, M.; Koksal, F.; Rabanal, F.P.Á.; Martinez-Barrera, G.: A novel lightweight gypsum composite with diatomite and polypropylene fibers. Constr. Build. Mater. 113, 732–740 (2016)CrossRef Gencel, O.; del Coz-Diaz, J.J.; Sutcu, M.; Koksal, F.; Rabanal, F.P.Á.; Martinez-Barrera, G.: A novel lightweight gypsum composite with diatomite and polypropylene fibers. Constr. Build. Mater. 113, 732–740 (2016)CrossRef
21.
go back to reference Wang, Q.; Cui, Y.; Xue, J.: Study on the improvement of the waterproof and mechanical properties of hemihydrate phosphogypsum-based foam insulation materials. Constr. Build. Mater. 230, 117014 (2020)CrossRef Wang, Q.; Cui, Y.; Xue, J.: Study on the improvement of the waterproof and mechanical properties of hemihydrate phosphogypsum-based foam insulation materials. Constr. Build. Mater. 230, 117014 (2020)CrossRef
22.
go back to reference Ismail, B.; Belayachi, N.; Hoxha, D.: Optimizing performance of insulation materials based on wheat straw, lime and gypsum plaster composites using natural additives. Constr. Build. Mater. 254, 118959 (2020)CrossRef Ismail, B.; Belayachi, N.; Hoxha, D.: Optimizing performance of insulation materials based on wheat straw, lime and gypsum plaster composites using natural additives. Constr. Build. Mater. 254, 118959 (2020)CrossRef
23.
go back to reference Dowling, A.; O’Dwyer, J.; Adley, C.C.: Lime in the limelight. J. Clean. Prod. 92, 13–22 (2015)CrossRef Dowling, A.; O’Dwyer, J.; Adley, C.C.: Lime in the limelight. J. Clean. Prod. 92, 13–22 (2015)CrossRef
24.
go back to reference Barbero-Barrera, M.; García-Santos, A.; Neila-González, F.: Thermal conductivity of lime mortars and calcined diatoms. Parameters influencing their performance and comparison with the traditional lime and mortars containing crushed marble used as renders. Energy Build. 76, 422–428 (2014)CrossRef Barbero-Barrera, M.; García-Santos, A.; Neila-González, F.: Thermal conductivity of lime mortars and calcined diatoms. Parameters influencing their performance and comparison with the traditional lime and mortars containing crushed marble used as renders. Energy Build. 76, 422–428 (2014)CrossRef
25.
go back to reference Mazhoud, B.; Collet, F.; Pretot, S.; Chamoin, J.: Hygric and thermal properties of hemp-lime plasters. Build. Environ. 96, 206–216 (2016)CrossRef Mazhoud, B.; Collet, F.; Pretot, S.; Chamoin, J.: Hygric and thermal properties of hemp-lime plasters. Build. Environ. 96, 206–216 (2016)CrossRef
26.
go back to reference P. Brzyski; M. Widomski, The influence of partial replacement of hemp shives by expanded perlite on physical properties of hemp-lime composite. In: AIP Conference Proceedings, AIP Publishing LLC, 2017, p. 040006. P. Brzyski; M. Widomski, The influence of partial replacement of hemp shives by expanded perlite on physical properties of hemp-lime composite. In: AIP Conference Proceedings, AIP Publishing LLC, 2017, p. 040006.
27.
go back to reference Barreca, F.; Fichera, C.: Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energy Build. 62, 507–513 (2013)CrossRef Barreca, F.; Fichera, C.: Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energy Build. 62, 507–513 (2013)CrossRef
28.
go back to reference Larsen, P.K.: Climatic protection of historical vaults with lime–perlite mortar. Stud. Conserv. 65(sup1), P174–P179 (2020)CrossRef Larsen, P.K.: Climatic protection of historical vaults with lime–perlite mortar. Stud. Conserv. 65(sup1), P174–P179 (2020)CrossRef
29.
go back to reference Rashad, A.M.: Metakaolin as cementitious material: History, scours, production and composition: a comprehensive overview. Constr. Build. Mater. 41, 303–318 (2013)CrossRef Rashad, A.M.: Metakaolin as cementitious material: History, scours, production and composition: a comprehensive overview. Constr. Build. Mater. 41, 303–318 (2013)CrossRef
30.
go back to reference Rashad, A.M.: Metakaolin: Fresh properties and optimum content for mechanical strength in traditional cementitious materials: a comprehensive overview. Rev. Adv. Mater. Sci. 40(1), 15–44 (2015) Rashad, A.M.: Metakaolin: Fresh properties and optimum content for mechanical strength in traditional cementitious materials: a comprehensive overview. Rev. Adv. Mater. Sci. 40(1), 15–44 (2015)
31.
go back to reference Rashad, A.M.: A brief on high-volume Class F fly ash as cement replacement: a guide for civil engineer. Int. J. Sustain. Built Environ. 4(2), 278–306 (2015)CrossRef Rashad, A.M.: A brief on high-volume Class F fly ash as cement replacement: a guide for civil engineer. Int. J. Sustain. Built Environ. 4(2), 278–306 (2015)CrossRef
32.
go back to reference Mehta, A.; Ashish, D.K.: Silica fume and waste glass in cement concrete production: a review. J. Build. Eng. 29, 100888 (2020)CrossRef Mehta, A.; Ashish, D.K.: Silica fume and waste glass in cement concrete production: a review. J. Build. Eng. 29, 100888 (2020)CrossRef
33.
go back to reference Demirboğa, R.: Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Build. Environ. 42(7), 2467–2471 (2007)CrossRef Demirboğa, R.: Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Build. Environ. 42(7), 2467–2471 (2007)CrossRef
34.
go back to reference Demirboǧa, R.: Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy Build. 35(2), 189–192 (2003)CrossRef Demirboǧa, R.: Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy Build. 35(2), 189–192 (2003)CrossRef
35.
go back to reference Urunkar, Y.; Pandit, A.; Bhargava, P.; Joshi, J.; Mathpati, C.; Vasanthakumaran, S.; Jain, D.; Hussain, Z.; Patel, S.; More, V.: Light-weight thermal insulating fly ash cenosphere ceramics. Int. J. Appl. Ceram. Technol. 15(6), 1467–1477 (2018)CrossRef Urunkar, Y.; Pandit, A.; Bhargava, P.; Joshi, J.; Mathpati, C.; Vasanthakumaran, S.; Jain, D.; Hussain, Z.; Patel, S.; More, V.: Light-weight thermal insulating fly ash cenosphere ceramics. Int. J. Appl. Ceram. Technol. 15(6), 1467–1477 (2018)CrossRef
36.
go back to reference Rashad, A.M.; Hassan, A.A.; Zeedan, S.R.: An investigation on alkali-activated Egyptian metakaolin pastes blended with quartz powder subjected to elevated temperatures. Appl. Clay Sci. 132, 366–376 (2016)CrossRef Rashad, A.M.; Hassan, A.A.; Zeedan, S.R.: An investigation on alkali-activated Egyptian metakaolin pastes blended with quartz powder subjected to elevated temperatures. Appl. Clay Sci. 132, 366–376 (2016)CrossRef
37.
go back to reference BS3892, Specification for Pulverized-Fuel Ash for Use with Portland Cement, BS 3892: Part i, British Standard, 1997. BS3892, Specification for Pulverized-Fuel Ash for Use with Portland Cement, BS 3892: Part i, British Standard, 1997.
38.
go back to reference ASTMC618–15, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM C618–15, ASTM International 2017. ASTMC618–15, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM C618–15, ASTM International 2017.
39.
go back to reference Morsy, M.; Rashad, A.M.; Shoukry, H.; Mokhtar, M.; El-Khodary, S.: Development of lime-pozzolan green binder: The influence of anhydrous gypsum and high ambient temperature curing. J. Build. Eng. 28, 101026 (2020)CrossRef Morsy, M.; Rashad, A.M.; Shoukry, H.; Mokhtar, M.; El-Khodary, S.: Development of lime-pozzolan green binder: The influence of anhydrous gypsum and high ambient temperature curing. J. Build. Eng. 28, 101026 (2020)CrossRef
40.
go back to reference Rashad, A.M.; Khalil, M.H.; El-Nashar, M.: Insulation efficiency of alkali-activated lightweight mortars containing different ratios of binder/expanded perlite fine aggregate. Innovat. Infrastr. Solut. 6(3), 1–14 (2021) Rashad, A.M.; Khalil, M.H.; El-Nashar, M.: Insulation efficiency of alkali-activated lightweight mortars containing different ratios of binder/expanded perlite fine aggregate. Innovat. Infrastr. Solut. 6(3), 1–14 (2021)
41.
go back to reference ASTMC138/C138M-09, Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete, ASTM C138/C138M-09, ASTM International, 2010. ASTMC138/C138M-09, Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete, ASTM C138/C138M-09, ASTM International, 2010.
42.
go back to reference ASTMC109/C109M, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens), ASTM C109/C109M ASTM International, West Conshohocken, USA, 2021. ASTMC109/C109M, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens), ASTM C109/C109M ASTM International, West Conshohocken, USA, 2021.
43.
go back to reference ASTMC642, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM C642, ASTM International, 2013. ASTMC642, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM C642, ASTM International, 2013.
44.
go back to reference ASTMC518–91, Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus, ASTM C518–91, ASTM International, 2017. ASTMC518–91, Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus, ASTM C518–91, ASTM International, 2017.
45.
go back to reference Rashad, A.M.: Insulating and fire-resistant behaviour of metakaolin and fly ash geopolymer mortars. Proc. Inst. Civ. Eng. Constr. Mater. 172(1), 37–44 (2019)CrossRef Rashad, A.M.: Insulating and fire-resistant behaviour of metakaolin and fly ash geopolymer mortars. Proc. Inst. Civ. Eng. Constr. Mater. 172(1), 37–44 (2019)CrossRef
46.
go back to reference A.M. Rashad, G.M. Essa, Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature. Cement Concrete Compos. 103617 (2020). A.M. Rashad, G.M. Essa, Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature. Cement Concrete Compos. 103617 (2020).
47.
go back to reference Ashrae, A.: Handbook of Fundamentals, American Society of Heating. Refrigerating and Air Conditioning Engineers Inc., Atlanta, GA (1997) Ashrae, A.: Handbook of Fundamentals, American Society of Heating. Refrigerating and Air Conditioning Engineers Inc., Atlanta, GA (1997)
48.
go back to reference Işıkdağ, B.: Characterization of lightweight ferrocement panels containing expanded perlite-based mortar. Constr. Build. Mater. 81, 15–23 (2015)CrossRef Işıkdağ, B.: Characterization of lightweight ferrocement panels containing expanded perlite-based mortar. Constr. Build. Mater. 81, 15–23 (2015)CrossRef
49.
go back to reference Lu, Z.; Zhang, J.; Sun, G.; Xu, B.; Li, Z.; Gong, C.: Effects of the form-stable expanded perlite/paraffin composite on cement manufactured by extrusion technique. Energy 82, 43–53 (2015)CrossRef Lu, Z.; Zhang, J.; Sun, G.; Xu, B.; Li, Z.; Gong, C.: Effects of the form-stable expanded perlite/paraffin composite on cement manufactured by extrusion technique. Energy 82, 43–53 (2015)CrossRef
50.
go back to reference Wang, L.; Liu, P.; Jing, Q.; Liu, Y.; Wang, W.; Zhang, Y.; Li, Z.: Strength properties and thermal conductivity of concrete with the addition of expanded perlite filled with aerogel. Constr. Build. Mater. 188, 747–757 (2018)CrossRef Wang, L.; Liu, P.; Jing, Q.; Liu, Y.; Wang, W.; Zhang, Y.; Li, Z.: Strength properties and thermal conductivity of concrete with the addition of expanded perlite filled with aerogel. Constr. Build. Mater. 188, 747–757 (2018)CrossRef
51.
go back to reference Law Yim Wan, D.S.; Aslani, F.; Ma, G.: Lightweight self-compacting concrete incorporating perlite, scoria, and polystyrene aggregates. J. Mater. Civ. Eng. 30(8), 04018178 (2018)CrossRef Law Yim Wan, D.S.; Aslani, F.; Ma, G.: Lightweight self-compacting concrete incorporating perlite, scoria, and polystyrene aggregates. J. Mater. Civ. Eng. 30(8), 04018178 (2018)CrossRef
52.
go back to reference Gao, H.; Liu, H.; Liao, L.; Mei, L.; Shuai, P.; Xi, Z.; Lv, G.: A novel inorganic thermal insulation material utilizing perlite tailings. Energy Build. 190, 25–33 (2019)CrossRef Gao, H.; Liu, H.; Liao, L.; Mei, L.; Shuai, P.; Xi, Z.; Lv, G.: A novel inorganic thermal insulation material utilizing perlite tailings. Energy Build. 190, 25–33 (2019)CrossRef
53.
go back to reference Topçu, İB.; Işıkdağ, B.: Manufacture of high heat conductivity resistant clay bricks containing perlite. Build. Environ. 42(10), 3540–3546 (2007)CrossRef Topçu, İB.; Işıkdağ, B.: Manufacture of high heat conductivity resistant clay bricks containing perlite. Build. Environ. 42(10), 3540–3546 (2007)CrossRef
54.
go back to reference Coppola, L.; Coffetti, D.; Crotti, E.; Marini, A.; Passoni, C.; Pastore, T.: Lightweight cement-free alkali-activated slag plaster for the structural retrofit and energy upgrading of poor quality masonry walls. Cement Concrete Compos. 104, 103341 (2019)CrossRef Coppola, L.; Coffetti, D.; Crotti, E.; Marini, A.; Passoni, C.; Pastore, T.: Lightweight cement-free alkali-activated slag plaster for the structural retrofit and energy upgrading of poor quality masonry walls. Cement Concrete Compos. 104, 103341 (2019)CrossRef
55.
go back to reference Su, Z.; Guo, L.; Zhang, Z.; Duan, P.: Influence of different fibers on properties of thermal insulation composites based on geopolymer blended with glazed hollow bead. Constr. Build. Mater. 203, 525–540 (2019)CrossRef Su, Z.; Guo, L.; Zhang, Z.; Duan, P.: Influence of different fibers on properties of thermal insulation composites based on geopolymer blended with glazed hollow bead. Constr. Build. Mater. 203, 525–540 (2019)CrossRef
56.
go back to reference Top, S.; Vapur, H.; Altiner, M.; Kaya, D.; Ekicibil, A.: Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates. J. Mole. Struct. 1202, 127236 (2020)CrossRef Top, S.; Vapur, H.; Altiner, M.; Kaya, D.; Ekicibil, A.: Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates. J. Mole. Struct. 1202, 127236 (2020)CrossRef
57.
go back to reference Zhu, M.; Ji, R.; Li, Z.; Wang, H.; Liu, L.; Zhang, Z.: Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass. Constr. Build. Mater. 112, 398–405 (2016)CrossRef Zhu, M.; Ji, R.; Li, Z.; Wang, H.; Liu, L.; Zhang, Z.: Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass. Constr. Build. Mater. 112, 398–405 (2016)CrossRef
58.
go back to reference Uysal, H.; Demirboğa, R.; Şahin, R.; Gül, R.: The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cem. Concr. Res. 34(5), 845–848 (2004)CrossRef Uysal, H.; Demirboğa, R.; Şahin, R.; Gül, R.: The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cem. Concr. Res. 34(5), 845–848 (2004)CrossRef
59.
go back to reference Demirboğa, R.; Türkmen, İ; Karakoç, M.B.: Thermo-mechanical properties of concrete containing high-volume mineral admixtures. Build. Environ. 42(1), 349–354 (2007)CrossRef Demirboğa, R.; Türkmen, İ; Karakoç, M.B.: Thermo-mechanical properties of concrete containing high-volume mineral admixtures. Build. Environ. 42(1), 349–354 (2007)CrossRef
60.
go back to reference Carrasco-Hurtado, B.; Corpas-Iglesias, F.; Cruz-Pérez, N.; Terrados-Cepeda, J.; Pérez-Villarejo, L.: Addition of bottom ash from biomass in calcium silicate masonry units for use as construction material with thermal insulating properties. Constr. Build. Mater. 52, 155–165 (2014)CrossRef Carrasco-Hurtado, B.; Corpas-Iglesias, F.; Cruz-Pérez, N.; Terrados-Cepeda, J.; Pérez-Villarejo, L.: Addition of bottom ash from biomass in calcium silicate masonry units for use as construction material with thermal insulating properties. Constr. Build. Mater. 52, 155–165 (2014)CrossRef
61.
go back to reference H. Binici; F. Kalaycı, Production of perlite based thermal insulating material. Int. J. Acad. Res. Reflect. 3(7) (2015). H. Binici; F. Kalaycı, Production of perlite based thermal insulating material. Int. J. Acad. Res. Reflect. 3(7) (2015).
62.
go back to reference Oktay, H.; Yumrutaş, R.; Akpolat, A.: Mechanical and thermophysical properties of lightweight aggregate concretes. Constr. Build. Mater. 96, 217–225 (2015)CrossRef Oktay, H.; Yumrutaş, R.; Akpolat, A.: Mechanical and thermophysical properties of lightweight aggregate concretes. Constr. Build. Mater. 96, 217–225 (2015)CrossRef
63.
go back to reference Abbas, N.; Khalid, H.R.; Ban, G.; Kim, H.T.; Lee, H.-K.: Silica aerogel derived from rice husk: an aggregate replacer for lightweight and thermally insulating cement-based composites. Constr. Build. Mater. 195, 312–322 (2019)CrossRef Abbas, N.; Khalid, H.R.; Ban, G.; Kim, H.T.; Lee, H.-K.: Silica aerogel derived from rice husk: an aggregate replacer for lightweight and thermally insulating cement-based composites. Constr. Build. Mater. 195, 312–322 (2019)CrossRef
64.
go back to reference Selvaranjan, K.; Navaratnam, S.; Gamage, J.; Thamboo, J.; Siddique, R.; Zhang, J.; Zhang, G.: Thermal and environmental impact analysis of rice husk ash-based mortar as insulating wall plaster. Constr. Build. Mater. 283, 122744 (2021)CrossRef Selvaranjan, K.; Navaratnam, S.; Gamage, J.; Thamboo, J.; Siddique, R.; Zhang, J.; Zhang, G.: Thermal and environmental impact analysis of rice husk ash-based mortar as insulating wall plaster. Constr. Build. Mater. 283, 122744 (2021)CrossRef
65.
go back to reference Lu, J.; Jiang, J.; Lu, Z.; Li, J.; Niu, Y.; Yang, Y.: Pore structure and hardened properties of aerogel/cement composites based on nanosilica and surface modification. Constr. Build. Mater. 245, 118434 (2020)CrossRef Lu, J.; Jiang, J.; Lu, Z.; Li, J.; Niu, Y.; Yang, Y.: Pore structure and hardened properties of aerogel/cement composites based on nanosilica and surface modification. Constr. Build. Mater. 245, 118434 (2020)CrossRef
66.
go back to reference Türkmen, İ; Kantarcı, A.: Effects of expanded perlite aggregate and different curing conditions on the physical and mechanical properties of self-compacting concrete. Build. Environ. 42(6), 2378–2383 (2007)CrossRef Türkmen, İ; Kantarcı, A.: Effects of expanded perlite aggregate and different curing conditions on the physical and mechanical properties of self-compacting concrete. Build. Environ. 42(6), 2378–2383 (2007)CrossRef
67.
go back to reference Pachta, V.; Papadopoulos, F.; Stefanidou, M.: Development and testing of grouts based on perlite by-products and lime. Constr. Build. Mater. 207, 338–344 (2019)CrossRef Pachta, V.; Papadopoulos, F.; Stefanidou, M.: Development and testing of grouts based on perlite by-products and lime. Constr. Build. Mater. 207, 338–344 (2019)CrossRef
68.
go back to reference Abidi, S.; Nait-Ali, B.; Joliff, Y.; Favotto, C.: Impact of perlite, vermiculite and cement on the thermal conductivity of a plaster composite material: experimental and numerical approaches. Compos. B Eng. 68, 392–400 (2015)CrossRef Abidi, S.; Nait-Ali, B.; Joliff, Y.; Favotto, C.: Impact of perlite, vermiculite and cement on the thermal conductivity of a plaster composite material: experimental and numerical approaches. Compos. B Eng. 68, 392–400 (2015)CrossRef
69.
go back to reference Carabba, L.; Moricone, R.; Scarponi, G.E.; Tugnoli, A.; Bignozzi, M.C.: Alkali activated lightweight mortars for passive fire protection: a preliminary study. Constr. Build. Mater. 195, 75–84 (2019)CrossRef Carabba, L.; Moricone, R.; Scarponi, G.E.; Tugnoli, A.; Bignozzi, M.C.: Alkali activated lightweight mortars for passive fire protection: a preliminary study. Constr. Build. Mater. 195, 75–84 (2019)CrossRef
70.
go back to reference Erdoğan, S.T.; Sağlık, A.Ü.: Early-age activation of cement pastes and mortars containing ground perlite as a pozzolan. Cement Concr. Compos. 38, 29–39 (2013)CrossRef Erdoğan, S.T.; Sağlık, A.Ü.: Early-age activation of cement pastes and mortars containing ground perlite as a pozzolan. Cement Concr. Compos. 38, 29–39 (2013)CrossRef
71.
go back to reference Lanzón, M.; García-Ruiz, P.: Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Constr. Build. Mater. 22(8), 1798–1806 (2008)CrossRef Lanzón, M.; García-Ruiz, P.: Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Constr. Build. Mater. 22(8), 1798–1806 (2008)CrossRef
72.
go back to reference Li, Q.; Wei, H.; Zhang, Y.; Han, L.; Han, S.; Ding, N.: The variations on thermal conductivity and structures of silty clay modified by waste fly ash and oil shale ash after freeze–thaw cycles. Constr. Build. Mater. 260, 119954 (2020)CrossRef Li, Q.; Wei, H.; Zhang, Y.; Han, L.; Han, S.; Ding, N.: The variations on thermal conductivity and structures of silty clay modified by waste fly ash and oil shale ash after freeze–thaw cycles. Constr. Build. Mater. 260, 119954 (2020)CrossRef
73.
go back to reference Zhang, J.; Pan, G.; Zheng, X.; Chen, C.: Preparation and characterization of ultra-lightweight fly ash-based cement foams incorporating ethylene-vinyl acetate emulsion and waste-derived CSH seeds. Constr. Build. Mater. 274, 122027 (2021)CrossRef Zhang, J.; Pan, G.; Zheng, X.; Chen, C.: Preparation and characterization of ultra-lightweight fly ash-based cement foams incorporating ethylene-vinyl acetate emulsion and waste-derived CSH seeds. Constr. Build. Mater. 274, 122027 (2021)CrossRef
74.
go back to reference Wang, H.; Sun, Y.; Liu, L.; Ji, R.; Wang, X.: Integrated utilization of fly ash and waste glass for synthesis of foam/dense bi-layered insulation ceramic tile. Energy Build. 168, 67–75 (2018)CrossRef Wang, H.; Sun, Y.; Liu, L.; Ji, R.; Wang, X.: Integrated utilization of fly ash and waste glass for synthesis of foam/dense bi-layered insulation ceramic tile. Energy Build. 168, 67–75 (2018)CrossRef
75.
go back to reference Du, Y.; Yang, W.; Ge, Y.; Wang, S.; Liu, P.: Thermal conductivity of cement paste containing waste glass powder, metakaolin and limestone filler as supplementary cementitious material. J. Clean. Prod. 287, 125018 (2021)CrossRef Du, Y.; Yang, W.; Ge, Y.; Wang, S.; Liu, P.: Thermal conductivity of cement paste containing waste glass powder, metakaolin and limestone filler as supplementary cementitious material. J. Clean. Prod. 287, 125018 (2021)CrossRef
76.
go back to reference Fenoglio, E.; Fantucci, S.; Serra, V.; Carbonaro, C.; Pollo, R.: Hygrothermal and environmental performance of a perlite-based insulating plaster for the energy retrofit of buildings. Energy Build. 179, 26–38 (2018)CrossRef Fenoglio, E.; Fantucci, S.; Serra, V.; Carbonaro, C.; Pollo, R.: Hygrothermal and environmental performance of a perlite-based insulating plaster for the energy retrofit of buildings. Energy Build. 179, 26–38 (2018)CrossRef
77.
go back to reference Sengul, O.; Azizi, S.; Karaosmanoglu, F.; Tasdemir, M.A.: Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build. 43(2–3), 671–676 (2011)CrossRef Sengul, O.; Azizi, S.; Karaosmanoglu, F.; Tasdemir, M.A.: Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build. 43(2–3), 671–676 (2011)CrossRef
78.
go back to reference Papa, E.; Medri, V.; Kpogbemabou, D.; Morinière, V.; Laumonier, J.; Vaccari, A.; Rossignol, S.: Porosity and insulating properties of silica-fume based foams. Energy Build. 131, 223–232 (2016)CrossRef Papa, E.; Medri, V.; Kpogbemabou, D.; Morinière, V.; Laumonier, J.; Vaccari, A.; Rossignol, S.: Porosity and insulating properties of silica-fume based foams. Energy Build. 131, 223–232 (2016)CrossRef
79.
go back to reference Leiva, C.; Arenas, C.; Vilches, L.; Alonso-Fariñas, B.; Rodriguez-Galán, M.: Development of fly ash boards with thermal, acoustic and fire insulation properties. Waste Manage. 46, 298–303 (2015)CrossRef Leiva, C.; Arenas, C.; Vilches, L.; Alonso-Fariñas, B.; Rodriguez-Galán, M.: Development of fly ash boards with thermal, acoustic and fire insulation properties. Waste Manage. 46, 298–303 (2015)CrossRef
80.
go back to reference Brooks, A.L.; Shen, Z.; Zhou, H.: Development of a high-temperature inorganic synthetic foam with recycled fly-ash cenospheres for thermal insulation brick manufacturing. J. Clean. Prod. 246, 118748 (2020)CrossRef Brooks, A.L.; Shen, Z.; Zhou, H.: Development of a high-temperature inorganic synthetic foam with recycled fly-ash cenospheres for thermal insulation brick manufacturing. J. Clean. Prod. 246, 118748 (2020)CrossRef
81.
go back to reference Zhang, Y.; Sun, Q.; Yang, X.: Changes in color and thermal properties of fly ash cement mortar after heat treatment. Constr. Build. Mater. 165, 72–81 (2018)CrossRef Zhang, Y.; Sun, Q.; Yang, X.: Changes in color and thermal properties of fly ash cement mortar after heat treatment. Constr. Build. Mater. 165, 72–81 (2018)CrossRef
82.
go back to reference Jiang, D.; Lv, S.; Cui, S.; Sun, S.; Song, X.; He, S.; Zhang, J.; An, P.: Effect of thermal insulation components on physical and mechanical properties of plant fibre composite thermal insulation mortar. J. Market. Res. 9(6), 12996–13013 (2020) Jiang, D.; Lv, S.; Cui, S.; Sun, S.; Song, X.; He, S.; Zhang, J.; An, P.: Effect of thermal insulation components on physical and mechanical properties of plant fibre composite thermal insulation mortar. J. Market. Res. 9(6), 12996–13013 (2020)
83.
go back to reference Lu, Z.; Hanif, A.; Lu, C.; Liu, K.; Sun, G.; Li, Z.: A novel lightweight cementitious composite with enhanced thermal insulation and mechanical properties by extrusion technique. Constr. Build. Mater. 163, 446–449 (2018)CrossRef Lu, Z.; Hanif, A.; Lu, C.; Liu, K.; Sun, G.; Li, Z.: A novel lightweight cementitious composite with enhanced thermal insulation and mechanical properties by extrusion technique. Constr. Build. Mater. 163, 446–449 (2018)CrossRef
84.
go back to reference A.M. Rashad; A.S. Ouda, Effect of tidal zone and seawater attack on high-volume fly ash pastes enhanced with metakaolin and quartz powder in the marine environment. Micropor. Mesopor. Mater. 111261 (2021). A.M. Rashad; A.S. Ouda, Effect of tidal zone and seawater attack on high-volume fly ash pastes enhanced with metakaolin and quartz powder in the marine environment. Micropor. Mesopor. Mater. 111261 (2021).
85.
go back to reference Soroka, I.; Setter, N.: The effect of fillers on strength of cement mortars. Cem. Concr. Res. 7(4), 449–456 (1977)CrossRef Soroka, I.; Setter, N.: The effect of fillers on strength of cement mortars. Cem. Concr. Res. 7(4), 449–456 (1977)CrossRef
86.
go back to reference Dias, W.; Khoury, G.; Sullivan, P.: Mechanical properties of hardened cement paste exposed to temperatures up to 700 C (1292 F). Mater. J. 87(2), 160–166 (1990) Dias, W.; Khoury, G.; Sullivan, P.: Mechanical properties of hardened cement paste exposed to temperatures up to 700 C (1292 F). Mater. J. 87(2), 160–166 (1990)
87.
go back to reference The Housing and Building Research Council: Residential Energy Efficiency Building Code, ECP 306. Dar Akhbar El Yom, Cairo (2005) The Housing and Building Research Council: Residential Energy Efficiency Building Code, ECP 306. Dar Akhbar El Yom, Cairo (2005)
Metadata
Title
Traditional Cementitious Materials for Thermal Insulation
Authors
Alaa M. Rashad
Ghada M. F. Essa
W. M. Morsi
Publication date
02-03-2022
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 10/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-06718-4

Other articles of this Issue 10/2022

Arabian Journal for Science and Engineering 10/2022 Go to the issue

Premium Partners