Skip to main content
Top
Published in: Journal of Computational Electronics 1/2014

01-03-2014

Transport study of gate and channel engineering on the surrounding-gate CNTFETs based on NEGF quantum theory

Authors: Wei Wang, Xiao Yang, Na Li, Guangran Xiao, Sitao Jiang, Chunping Xia, Yan Wang

Published in: Journal of Computational Electronics | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we comprehensively study the effects of gate and channel engineering on the performances of surrounding-gate CNTFETs using a quantum kinetic model, which is based on two-dimensional non-equilibrium Green functions (NEGF) solved self-consistently with Poisson’s equations. The iterative approach between Poisson equation and NEGF has been discussed. For the first time, the influences of double-material-gate and linear doping structures on the CNTFETs have been investigated. The calculated results show that double-material-gate CNTFETs with conventional doping (DMG-CNTFETs) can effectively suppress the drain-induced barrier lowering (DIBL), short-channel effects (SCEs), and achieve better sub-threshold property as compared with single-material-gate CNTFETs with conventional doping (SMG-CNTFETs). Compared with conventional doping, linear doping presents lower leakage current, higher I on /I off ratio, and lower sub-threshold swing, which means a better ability of gate controlling. In addition, we present a detailed discussion of the performances of scaling down, and conclude that DMG structure can meet the ITRS’10 requirements better than SMG, especially that the I on /I off ratio is two orders of magnitude higher than that of ITRS’10 requirements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mohammadpou, H., Asgari, A.: Numerical study of quantum transport in the double-gate grapheme nanoribbon field effect transistors. Phys. E 43, 1708–1711 (2011) CrossRef Mohammadpou, H., Asgari, A.: Numerical study of quantum transport in the double-gate grapheme nanoribbon field effect transistors. Phys. E 43, 1708–1711 (2011) CrossRef
2.
go back to reference Mohankumar, N., Syamal, B., Sarkar, C.K.: IEEE Trans. Electron Devices 57(4), 802–807 (2010) CrossRef Mohankumar, N., Syamal, B., Sarkar, C.K.: IEEE Trans. Electron Devices 57(4), 802–807 (2010) CrossRef
3.
go back to reference Colinge, J.P.: Multiple-gate SOI MOSFETs. Solid-State Electron. 489(6), 897–905 (2004) CrossRef Colinge, J.P.: Multiple-gate SOI MOSFETs. Solid-State Electron. 489(6), 897–905 (2004) CrossRef
4.
go back to reference Kordrostamim, Z., Sheikhi, H., Zarifkar, A.: Design dependent cutoff frequency of nanotransistors near the ultimate performance limit. Int. J. Mod. Phys. B 26(32), 1250196–1250110 (2012) Kordrostamim, Z., Sheikhi, H., Zarifkar, A.: Design dependent cutoff frequency of nanotransistors near the ultimate performance limit. Int. J. Mod. Phys. B 26(32), 1250196–1250110 (2012)
5.
go back to reference Long, W., Ou, H., Kuo, J., Chin, K.K.: Double-material gate (DMG) field effect transistors. IEEE Trans. Electron Devices 469(5), 865–870 (1999) CrossRef Long, W., Ou, H., Kuo, J., Chin, K.K.: Double-material gate (DMG) field effect transistors. IEEE Trans. Electron Devices 469(5), 865–870 (1999) CrossRef
6.
go back to reference Chaudhry, A., Kumar, M.J.: Investigation of the novel attributes of a fully depleted double-material gate SOI MOSFET. IEEE Trans. Electron Devices 51(9), 463–1467 (2004) CrossRef Chaudhry, A., Kumar, M.J.: Investigation of the novel attributes of a fully depleted double-material gate SOI MOSFET. IEEE Trans. Electron Devices 51(9), 463–1467 (2004) CrossRef
7.
go back to reference Chakraborty, S., Mallik, A., Sarkar, C.K.: Sub-threshold performance of double-material gate CMOS devices and circuits for ultralow power analog/mixed-signal applications. IEEE Trans. Electron Devices 55(3), 827–832 (2008) CrossRef Chakraborty, S., Mallik, A., Sarkar, C.K.: Sub-threshold performance of double-material gate CMOS devices and circuits for ultralow power analog/mixed-signal applications. IEEE Trans. Electron Devices 55(3), 827–832 (2008) CrossRef
8.
go back to reference Yuan, J., Woo, J.C.S.: A novel split-gate MOSFET design realized by a fully silicided gate process for the improvement of transconductance and output resistance. IEEE Trans. Electron Devices 26(11), 29–831 (2005) Yuan, J., Woo, J.C.S.: A novel split-gate MOSFET design realized by a fully silicided gate process for the improvement of transconductance and output resistance. IEEE Trans. Electron Devices 26(11), 29–831 (2005)
9.
go back to reference Zhou, X.: Exploring the novel characteristics of hetero-material gate field-effect transistors (HMGFETs) with gate-material engineering. IEEE Trans. Electron Devices 47(1), 113–120 (2000) CrossRef Zhou, X.: Exploring the novel characteristics of hetero-material gate field-effect transistors (HMGFETs) with gate-material engineering. IEEE Trans. Electron Devices 47(1), 113–120 (2000) CrossRef
10.
go back to reference Liu, X.H., Zhang, J.S., Wang, J.W., Ao, Q., Wang, Z., Ma, Y., Li, X., Wang, Z.S., Wang, R.Y.: Study on transport characteristics of CNTFET with HALO-LDD doping structure based on NEGF quantum theory. Acta Phys. Sin. 10, 107302 (2012) Liu, X.H., Zhang, J.S., Wang, J.W., Ao, Q., Wang, Z., Ma, Y., Li, X., Wang, Z.S., Wang, R.Y.: Study on transport characteristics of CNTFET with HALO-LDD doping structure based on NEGF quantum theory. Acta Phys. Sin. 10, 107302 (2012)
11.
go back to reference Kordrostami, Z., Sheikhi, M.H., Zarifkar, A.: Influence of channel and underlap engineering on the high-frequency and switching performance of CNTFETs. IEEE Trans. Nanotechnol. 11(3), 526–533 (2012) CrossRef Kordrostami, Z., Sheikhi, M.H., Zarifkar, A.: Influence of channel and underlap engineering on the high-frequency and switching performance of CNTFETs. IEEE Trans. Nanotechnol. 11(3), 526–533 (2012) CrossRef
12.
go back to reference Hassaninia, I., Sheikhi, M.H., Kordrostami, Z.: Simulation of carbon nanotube FETs with linear doping profile near the source and drain contacts. Solid-State Electron. 52, 980–985 (2008) CrossRef Hassaninia, I., Sheikhi, M.H., Kordrostami, Z.: Simulation of carbon nanotube FETs with linear doping profile near the source and drain contacts. Solid-State Electron. 52, 980–985 (2008) CrossRef
13.
go back to reference Zhao, P., Choudhury, M., Mohanram, K., Guo, J.: Computational model of edge effects in graphene nanoribbon transistors. Nano Res. 1, 395–402 (2008) CrossRef Zhao, P., Choudhury, M., Mohanram, K., Guo, J.: Computational model of edge effects in graphene nanoribbon transistors. Nano Res. 1, 395–402 (2008) CrossRef
14.
go back to reference Liang, G., Neophytou, N., Lundstrom, M.S., Nikonov, D.E.: Computational study of double-gate graphene nano-ribbon transistors. J. Comput. Electron. 7, 394–397 (2008) CrossRef Liang, G., Neophytou, N., Lundstrom, M.S., Nikonov, D.E.: Computational study of double-gate graphene nano-ribbon transistors. J. Comput. Electron. 7, 394–397 (2008) CrossRef
15.
go back to reference Guo, J.: Modeling of graphene nanoribbon devices. Nanoscale 4, 5538–5548 (2012) CrossRef Guo, J.: Modeling of graphene nanoribbon devices. Nanoscale 4, 5538–5548 (2012) CrossRef
16.
go back to reference Yoon, Y., Fiori, G., Hong, S., et al.: Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs. IEEE Trans. Electron Devices 55(9), 2314–2323 (2008) CrossRef Yoon, Y., Fiori, G., Hong, S., et al.: Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs. IEEE Trans. Electron Devices 55(9), 2314–2323 (2008) CrossRef
17.
go back to reference Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000) CrossRef Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000) CrossRef
18.
go back to reference Orouji, A.A., Arefinia, Z.: Detailed simulation study of a dual material gate carbon nanotube field-effect transistor. Physica E, Low-Dimens. Syst. Nanostruct. 41(10), 552–557 (2009) CrossRef Orouji, A.A., Arefinia, Z.: Detailed simulation study of a dual material gate carbon nanotube field-effect transistor. Physica E, Low-Dimens. Syst. Nanostruct. 41(10), 552–557 (2009) CrossRef
19.
go back to reference Xia, T.S., Register, L.F., Banerjee, S.K.: Simulation study of the carbon nanotube field effect transistors beyond the complex band structure effect. Solid-State Electron. 49(3), 860–864 (2005) CrossRef Xia, T.S., Register, L.F., Banerjee, S.K.: Simulation study of the carbon nanotube field effect transistors beyond the complex band structure effect. Solid-State Electron. 49(3), 860–864 (2005) CrossRef
20.
go back to reference Arefinia, Z., Orouji, A.A.: Quantum simulation study of a new carbon nanotube field-effect transistor with electrically induced source/drain extension. IEEE Trans. Device Mater. Reliab. 9(2), 237–243 (2009) CrossRef Arefinia, Z., Orouji, A.A.: Quantum simulation study of a new carbon nanotube field-effect transistor with electrically induced source/drain extension. IEEE Trans. Device Mater. Reliab. 9(2), 237–243 (2009) CrossRef
22.
go back to reference Koswatta, S.O., Hasan, S., Lundstrom, M.S., et al.: Nonequilibrium Green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron Devices 54(9), 2339–2351 (2007) CrossRef Koswatta, S.O., Hasan, S., Lundstrom, M.S., et al.: Nonequilibrium Green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron Devices 54(9), 2339–2351 (2007) CrossRef
Metadata
Title
Transport study of gate and channel engineering on the surrounding-gate CNTFETs based on NEGF quantum theory
Authors
Wei Wang
Xiao Yang
Na Li
Guangran Xiao
Sitao Jiang
Chunping Xia
Yan Wang
Publication date
01-03-2014
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2014
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-013-0499-y

Other articles of this Issue 1/2014

Journal of Computational Electronics 1/2014 Go to the issue