Skip to main content
Top

2013 | OriginalPaper | Chapter

16. Tree and Network Building

Author : Naruya Saitou

Published in: Introduction to Evolutionary Genomics

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Construction of phylogenetic trees from nucleotide or amino acid sequence data is one of the important areas of evolutionary genomics. We start from classification of tree-building methods, both by type of data and by type of tree search algorithm. Various distance matrix methods including UPGMA, minimum deviation methods, minimum evolution methods, transformed distance methods, and neighbor-joining method are explained. Among character-state methods, maximum parsimony methods, maximum likelihood methods, and Bayesian method are explained. These many phylogenetic tree-making methods were compared mainly based on computer simulation studies. Phylogenetic network constructions from distance matrix and from multiply aligned sequences are also discussed as well as phylogeny construction without multiple alignments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.
2.
go back to reference Ohtsuka, H., Oyanagi, M., Mafune, Y., Miyashita, N., Shiroishi, T., Moriwaki, K., Kominami, R., & Saitou, N. (1996). The presence/absence polymorphism and evolution of p53 pseudogene within the genus Mus. Molecular Phylogenetics and Evolution, 5, 548–556.CrossRef Ohtsuka, H., Oyanagi, M., Mafune, Y., Miyashita, N., Shiroishi, T., Moriwaki, K., Kominami, R., & Saitou, N. (1996). The presence/absence polymorphism and evolution of p53 pseudogene within the genus Mus. Molecular Phylogenetics and Evolution, 5, 548–556.CrossRef
3.
go back to reference Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.CrossRef Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.CrossRef
4.
go back to reference Saitou, N. (1996). Reconstruction of gene trees from sequence data. In R. Doolittle (Ed.), Methods in enzymology, 266: Computer methods for macromolecular sequence analysis (pp. 427–449). San Diego: Academic Press.CrossRef Saitou, N. (1996). Reconstruction of gene trees from sequence data. In R. Doolittle (Ed.), Methods in enzymology, 266: Computer methods for macromolecular sequence analysis (pp. 427–449). San Diego: Academic Press.CrossRef
5.
go back to reference Saitou, N. (2007). Genomu Shinkagaku Nyumon. Tokyo: Kyoritsu-Shuppan (in Japanese). Saitou, N. (2007). Genomu Shinkagaku Nyumon. Tokyo: Kyoritsu-Shuppan (in Japanese).
6.
go back to reference Saitou, N., & Imanishi, T. (1989). Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Molecular Biology and Evolution, 6, 514–525. Saitou, N., & Imanishi, T. (1989). Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Molecular Biology and Evolution, 6, 514–525.
7.
go back to reference Saitou, N., & Nei, M. (1986). The number of nucleotides required to determine the branching order of three species, with special reference to the human-chimpanzee-gorilla divergence. Journal of Molecular Evolution, 24, 189–204.CrossRef Saitou, N., & Nei, M. (1986). The number of nucleotides required to determine the branching order of three species, with special reference to the human-chimpanzee-gorilla divergence. Journal of Molecular Evolution, 24, 189–204.CrossRef
8.
go back to reference Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of National Academy of Sciences, USA, 101, 11030–11035.CrossRef Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of National Academy of Sciences, USA, 101, 11030–11035.CrossRef
9.
go back to reference Sneath, P. H. P., & Sokal, R. (1973). Numerical taxonomy. San Francisco: W. H. Freeman.MATH Sneath, P. H. P., & Sokal, R. (1973). Numerical taxonomy. San Francisco: W. H. Freeman.MATH
10.
go back to reference Sokal, R., & Sneath, P. H. P. (1968) Principles of numerical taxonomy. Sokal, R., & Sneath, P. H. P. (1968) Principles of numerical taxonomy.
11.
go back to reference Sokal, R., & Michener, C. D. (1958). A statistical method for evaluating systematic relationship. University of Kansas Science Bulletin, 38, 1409–1438. Sokal, R., & Michener, C. D. (1958). A statistical method for evaluating systematic relationship. University of Kansas Science Bulletin, 38, 1409–1438.
12.
go back to reference Nei, M. (1975). Molecular population genetics and evolution. Amsterdam: North-Holland. Nei, M. (1975). Molecular population genetics and evolution. Amsterdam: North-Holland.
13.
go back to reference Chakraborty, R. (1977). Estimation of the time of divergence from phylogenetic studies. Canadian Journal of Genetics and Cytology, 19, 217–223. Chakraborty, R. (1977). Estimation of the time of divergence from phylogenetic studies. Canadian Journal of Genetics and Cytology, 19, 217–223.
14.
go back to reference Fitch, W. M., & Margoliash, E. (1967). Construction of phylogenetic trees. Science, 155, 279–284.CrossRef Fitch, W. M., & Margoliash, E. (1967). Construction of phylogenetic trees. Science, 155, 279–284.CrossRef
15.
go back to reference Tateno, Y., Nei, M., & Tajima, F. (1982). Accuracy of estimated phylogenetic trees from molecular data. I. Distantly related species. Journal of Molecular Evolution, 18, 387–404.CrossRef Tateno, Y., Nei, M., & Tajima, F. (1982). Accuracy of estimated phylogenetic trees from molecular data. I. Distantly related species. Journal of Molecular Evolution, 18, 387–404.CrossRef
16.
go back to reference Cavalli-Sforza, L. L., & Edwards, A. W. F. (1967). Phylogenetic analysis: Models and estimation procedures. American Journal of Human Genetics, 19, 233–257. Cavalli-Sforza, L. L., & Edwards, A. W. F. (1967). Phylogenetic analysis: Models and estimation procedures. American Journal of Human Genetics, 19, 233–257.
17.
go back to reference Rzhetsky, A., & Nei, M. (1992). Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. Journal of Molecular Evolution, 35, 367–375.CrossRef Rzhetsky, A., & Nei, M. (1992). Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. Journal of Molecular Evolution, 35, 367–375.CrossRef
18.
go back to reference Edwards, A. W. F., & Cavalli-Sforza, L. L. (1964). A method for cluster analysis. Biometrics, 21, 362–375.CrossRef Edwards, A. W. F., & Cavalli-Sforza, L. L. (1964). A method for cluster analysis. Biometrics, 21, 362–375.CrossRef
19.
go back to reference Courant, R., Robbins, H., & Stewart, I. (1996). What is mathematics? Second edition: Oxford University Press. Courant, R., Robbins, H., & Stewart, I. (1996). What is mathematics? Second edition: Oxford University Press.
20.
go back to reference Rzhetsky, A., & Nei, M. (1992). A simple method for estimating and testing minimum-evolution trees. Molecular Biology and Evolution, 9, 945–967. Rzhetsky, A., & Nei, M. (1992). A simple method for estimating and testing minimum-evolution trees. Molecular Biology and Evolution, 9, 945–967.
22.
go back to reference Nei, M., Kumar, S., & Takahashi, K. (1998). The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proceedings of National Academy of Sciences, USA, 95, 12390–12397.CrossRef Nei, M., Kumar, S., & Takahashi, K. (1998). The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proceedings of National Academy of Sciences, USA, 95, 12390–12397.CrossRef
23.
go back to reference Pauplin, Y. (2000). Direct calculation of a tree length using a distance matrix. Journal of Molecular Evolution, 51, 41–47. Pauplin, Y. (2000). Direct calculation of a tree length using a distance matrix. Journal of Molecular Evolution, 51, 41–47.
24.
25.
go back to reference Gascuel, O., & Steel, M. (2006). Neighbor-joining revealed. Molecular Biology and Evolution, 23, 1997–2000.CrossRef Gascuel, O., & Steel, M. (2006). Neighbor-joining revealed. Molecular Biology and Evolution, 23, 1997–2000.CrossRef
26.
go back to reference Mihaescu, R., & Pachter, L. (2008). Combinatorics of least-squares trees. Proceedings of the National Academy of Sciences of the United States of America, 105, 13206–13211.MATHMathSciNetCrossRef Mihaescu, R., & Pachter, L. (2008). Combinatorics of least-squares trees. Proceedings of the National Academy of Sciences of the United States of America, 105, 13206–13211.MATHMathSciNetCrossRef
27.
go back to reference Price, M., Dehal, P. S., & Arkin, A. P. (2009). FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26, 1641–1650.CrossRef Price, M., Dehal, P. S., & Arkin, A. P. (2009). FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26, 1641–1650.CrossRef
28.
go back to reference Farris, J. S. (1972). Estimating phylogenetic trees from distance matrices. American Naturalist, 106, 645–668.CrossRef Farris, J. S. (1972). Estimating phylogenetic trees from distance matrices. American Naturalist, 106, 645–668.CrossRef
29.
go back to reference Faith, D. P. (1985). Distance methods and the approximation of most-parsimonious trees. Systematic Zoology, 34, 312–325.CrossRef Faith, D. P. (1985). Distance methods and the approximation of most-parsimonious trees. Systematic Zoology, 34, 312–325.CrossRef
30.
go back to reference Farris, J. S., Kluge, A. G., & Exkardt, M. J. (1970). A numerical approach to phylogenetic systematics. Systematic Zoology, 19, 172–191.CrossRef Farris, J. S., Kluge, A. G., & Exkardt, M. J. (1970). A numerical approach to phylogenetic systematics. Systematic Zoology, 19, 172–191.CrossRef
31.
go back to reference Klotz, L. C., & Blanken, R. L. (1981). A practical method for calculating evolutionary trees from sequence data. Journal of Theoretical Biology, 91, 261–272.CrossRef Klotz, L. C., & Blanken, R. L. (1981). A practical method for calculating evolutionary trees from sequence data. Journal of Theoretical Biology, 91, 261–272.CrossRef
32.
go back to reference Li, W.-H. (1981). Simple method for constructing phylogenetic trees from distance matrices. Proceedings of National Academy of Sciences, USA, 78, 1085–1089.MATHCrossRef Li, W.-H. (1981). Simple method for constructing phylogenetic trees from distance matrices. Proceedings of National Academy of Sciences, USA, 78, 1085–1089.MATHCrossRef
33.
go back to reference OOta, S. (1998). ThreeTree: A new method to reconstruct phylogenetic trees. Genome Informatics, 9, 340–341. OOta, S. (1998). ThreeTree: A new method to reconstruct phylogenetic trees. Genome Informatics, 9, 340–341.
34.
35.
go back to reference Buneman, P. (1971). The recovery of trees from measurements of dissimilarity. In F. R. Hodson, D. G. Kendall, & P. Tautu (Eds.), Mathematics in the archeological and historical sciences (pp. 387–395). Edinburgh: Edinburgh University Press. Buneman, P. (1971). The recovery of trees from measurements of dissimilarity. In F. R. Hodson, D. G. Kendall, & P. Tautu (Eds.), Mathematics in the archeological and historical sciences (pp. 387–395). Edinburgh: Edinburgh University Press.
36.
go back to reference Fitch, W. M. (1981). A non-sequential method for constructing trees and hierarchical classifications. Journal of Molecular Evolution, 18, 30–37.CrossRef Fitch, W. M. (1981). A non-sequential method for constructing trees and hierarchical classifications. Journal of Molecular Evolution, 18, 30–37.CrossRef
37.
go back to reference Sattath, S., & Tversky, A. (1977). Additive similarity trees. Psychometrika, 42, 319–345.CrossRef Sattath, S., & Tversky, A. (1977). Additive similarity trees. Psychometrika, 42, 319–345.CrossRef
38.
go back to reference Saitou N. (1986). Theoretical studies on the methods of reconstructing phylogenetic trees from DNA sequence data. Ph.D. dissertation. Graduate University of Biomedical Sciences, University of Texas Health Science Center at Houston. Saitou N. (1986). Theoretical studies on the methods of reconstructing phylogenetic trees from DNA sequence data. Ph.D. dissertation. Graduate University of Biomedical Sciences, University of Texas Health Science Center at Houston.
39.
go back to reference Studier, J. A., & Keppler, K. J. (1988). A note on the neighbor-joining algorithm of Saitou and Nei. Molecular Biology and Evolution, 5, 729–731. Studier, J. A., & Keppler, K. J. (1988). A note on the neighbor-joining algorithm of Saitou and Nei. Molecular Biology and Evolution, 5, 729–731.
40.
go back to reference Ishida, N., Oyunsuren, T., Mashima, S., Mukoyama, H., & Saitou, N. (1995). Mitochondrial DNA sequences of various species of the genus Equus with a special reference to the phylogenetic relationship between Przewalskii’s wild horse and domestic horse. Journal of Molecular Evolution, 41, 180–188.CrossRef Ishida, N., Oyunsuren, T., Mashima, S., Mukoyama, H., & Saitou, N. (1995). Mitochondrial DNA sequences of various species of the genus Equus with a special reference to the phylogenetic relationship between Przewalskii’s wild horse and domestic horse. Journal of Molecular Evolution, 41, 180–188.CrossRef
41.
go back to reference Gascuel, O. (1997). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution, 14, 685–695.CrossRef Gascuel, O. (1997). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution, 14, 685–695.CrossRef
42.
go back to reference Bruno, W. J., Socci, N. D., & Halpern, A. L. (2000). Weighted neighbor joining: A likelihood-based approach to distance-based phylogeny reconstruction. Molecular Biology and Evolution, 17, 189–197.CrossRef Bruno, W. J., Socci, N. D., & Halpern, A. L. (2000). Weighted neighbor joining: A likelihood-based approach to distance-based phylogeny reconstruction. Molecular Biology and Evolution, 17, 189–197.CrossRef
43.
go back to reference Kumar, S. (1996). A stepwise algorithm for finding minimum evolution trees. Molecular Biology and Evolution, 13, 584–593.CrossRef Kumar, S. (1996). A stepwise algorithm for finding minimum evolution trees. Molecular Biology and Evolution, 13, 584–593.CrossRef
44.
go back to reference Pearson, W. R., Robins, G., & Zhang, T. (1999). Generalized neighbor-joining: More reliable phylogenetic tree reconstruction. Molecular Biology and Evolution, 16, 806–816.CrossRef Pearson, W. R., Robins, G., & Zhang, T. (1999). Generalized neighbor-joining: More reliable phylogenetic tree reconstruction. Molecular Biology and Evolution, 16, 806–816.CrossRef
45.
go back to reference Dress, A. (1984). Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces. Advances in Mathematics, 53, 321–402.MATHMathSciNetCrossRef Dress, A. (1984). Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces. Advances in Mathematics, 53, 321–402.MATHMathSciNetCrossRef
46.
go back to reference Dress, A., Huber, K. H., Koolen, J., Moulton, V., & Spillner, A. (2012). Basic phylogenetic combinatorics. Cambridge: Cambridge University Press. Dress, A., Huber, K. H., Koolen, J., Moulton, V., & Spillner, A. (2012). Basic phylogenetic combinatorics. Cambridge: Cambridge University Press.
47.
go back to reference Bandelt, H. J., & Dress, A. W. (1992). Split decomposition: A new and useful approach to phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution, 1, 242–252.CrossRef Bandelt, H. J., & Dress, A. W. (1992). Split decomposition: A new and useful approach to phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution, 1, 242–252.CrossRef
48.
go back to reference Kitano, T., Noda, R., Takenaka, O., & Saitou, N. (2009). Relic of ancient recombinations in gibbon ABO blood group genes deciphered through phylogenetic network analysis. Molecular Phylogenetics and Evolution, 51, 465–471.CrossRef Kitano, T., Noda, R., Takenaka, O., & Saitou, N. (2009). Relic of ancient recombinations in gibbon ABO blood group genes deciphered through phylogenetic network analysis. Molecular Phylogenetics and Evolution, 51, 465–471.CrossRef
49.
go back to reference Bryant, D., & Moulton, V. (2004). Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution, 21, 255–265.CrossRef Bryant, D., & Moulton, V. (2004). Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution, 21, 255–265.CrossRef
50.
go back to reference Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.CrossRef Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.CrossRef
51.
go back to reference Camin, J. H., & Sokal, R. R. (1965). A method for deducing branching sequences in phylogeny. Evolution, 19, 311–326.CrossRef Camin, J. H., & Sokal, R. R. (1965). A method for deducing branching sequences in phylogeny. Evolution, 19, 311–326.CrossRef
52.
go back to reference Eck, R. V., & Dayhoff, M. (1966). Atlas of protein sequence and structure. Silver Spring: National Biomedical Research Foundation. Eck, R. V., & Dayhoff, M. (1966). Atlas of protein sequence and structure. Silver Spring: National Biomedical Research Foundation.
53.
go back to reference Felsenstein, J. (2004). Inferring phylogenies. Sunderland: Sinauer Associates. Felsenstein, J. (2004). Inferring phylogenies. Sunderland: Sinauer Associates.
54.
go back to reference Fitch, W. M. (1977). On the problem of discovering the most parsimonious tree. American Naturalist, 111, 223–257.CrossRef Fitch, W. M. (1977). On the problem of discovering the most parsimonious tree. American Naturalist, 111, 223–257.CrossRef
55.
go back to reference Hartigan, J. A. (1973). Minimum mutation fits to a given tree. Biometrics, 29, 53–65.CrossRef Hartigan, J. A. (1973). Minimum mutation fits to a given tree. Biometrics, 29, 53–65.CrossRef
56.
go back to reference Zharkikh, A. A. (1977). Algorithm for constructing phylogenetic trees from amino acid sequences. In V. A. Ratner (Ed.), Mathematical models of evolution and selection (pp. 5–52). Novosibirsk: Institute of Cytology and Genetics (in Russian). Zharkikh, A. A. (1977). Algorithm for constructing phylogenetic trees from amino acid sequences. In V. A. Ratner (Ed.), Mathematical models of evolution and selection (pp. 5–52). Novosibirsk: Institute of Cytology and Genetics (in Russian).
57.
go back to reference Zharkikh, A. A., & Ratner, V. A. (1996). Methods for studying the evolution of macromolecules. In V. A. Ratner et al. (Eds.), Molecular evolution (pp. 71–91). Berlin/New York: Springer-Verlag. Zharkikh, A. A., & Ratner, V. A. (1996). Methods for studying the evolution of macromolecules. In V. A. Ratner et al. (Eds.), Molecular evolution (pp. 71–91). Berlin/New York: Springer-Verlag.
58.
go back to reference Saitou, N. (1998). Simultaneous sequence joining (SSJ): A new method for reconstruction of phylogenetic networks of closely related sequences (Abstract). Anthropological Science, 106, 141–142. Saitou, N. (1998). Simultaneous sequence joining (SSJ): A new method for reconstruction of phylogenetic networks of closely related sequences (Abstract). Anthropological Science, 106, 141–142.
59.
go back to reference Tateno, Y. (1990). A method for molecular phylogeny construction by direct use of nucleotide sequence data. Journal of Molecular Evolution, 30, 85–93.CrossRef Tateno, Y. (1990). A method for molecular phylogeny construction by direct use of nucleotide sequence data. Journal of Molecular Evolution, 30, 85–93.CrossRef
60.
go back to reference Wilson, A. O. (1965). A consistency test for phylogenies based on contemporaneous species. Systematic Zoology, 14, 214–220.CrossRef Wilson, A. O. (1965). A consistency test for phylogenies based on contemporaneous species. Systematic Zoology, 14, 214–220.CrossRef
61.
go back to reference Le Quesne, W. J. (1969). A method of selection of characters in numerical taxonomy. Systematic Zoology, 18, 201–205.CrossRef Le Quesne, W. J. (1969). A method of selection of characters in numerical taxonomy. Systematic Zoology, 18, 201–205.CrossRef
62.
go back to reference Saitou, N. (1989). A theoretical study of the underestimation of branch lengths by the maximum parsimony principle. Systematic Zoology, 38, 1–5.CrossRef Saitou, N. (1989). A theoretical study of the underestimation of branch lengths by the maximum parsimony principle. Systematic Zoology, 38, 1–5.CrossRef
63.
go back to reference Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27, 401–410.CrossRef Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27, 401–410.CrossRef
64.
go back to reference Zharkikh, A., & Li, W.-H. (1993). Inconsistency of the maximum parsimony method: The case of five taxa with a molecular clock. Systematic Biology, 42, 113–125. Zharkikh, A., & Li, W.-H. (1993). Inconsistency of the maximum parsimony method: The case of five taxa with a molecular clock. Systematic Biology, 42, 113–125.
65.
go back to reference Takezaki, N., & Nei, M. (1994). Inconsistency of the maximum parsimony method when the rate of nucleotide substitution is constant. Journal of Molecular Evolution, 39, 210–218. Takezaki, N., & Nei, M. (1994). Inconsistency of the maximum parsimony method when the rate of nucleotide substitution is constant. Journal of Molecular Evolution, 39, 210–218.
66.
go back to reference Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526. Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.
67.
go back to reference Saitou, N., & Ueda, S. (1994). Evolutionary rate of insertions and deletions in non-coding nucleotide sequences of primates. Molecular Biology and Evolution, 11, 504–512. Saitou, N., & Ueda, S. (1994). Evolutionary rate of insertions and deletions in non-coding nucleotide sequences of primates. Molecular Biology and Evolution, 11, 504–512.
68.
go back to reference Bernstein, F. (1925). Zusammenfassende betrachtungen uber die erblichen blutstrukturen des menschen. Molecular and General Genetics, 37, 237–370. Bernstein, F. (1925). Zusammenfassende betrachtungen uber die erblichen blutstrukturen des menschen. Molecular and General Genetics, 37, 237–370.
69.
go back to reference Yasuda, N., & Kimura, M. (1968). A gene-counting method of maximum likelihood for estimating gene frequencies in ABO and ABO-like systems. Annals of Human Genetics, 31, 409–420.CrossRef Yasuda, N., & Kimura, M. (1968). A gene-counting method of maximum likelihood for estimating gene frequencies in ABO and ABO-like systems. Annals of Human Genetics, 31, 409–420.CrossRef
70.
go back to reference Neyman, J. (1971). Molecular studies of evolution: A source of novel statistical problems. In S. S. Gupta & J. Yackel (Eds.), Statistical decision theory and related topics (pp. 1–27). New York: Academic Press. Neyman, J. (1971). Molecular studies of evolution: A source of novel statistical problems. In S. S. Gupta & J. Yackel (Eds.), Statistical decision theory and related topics (pp. 1–27). New York: Academic Press.
71.
go back to reference Felsenstein, J. (1973). Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics, 25, 471–492. Felsenstein, J. (1973). Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics, 25, 471–492.
72.
go back to reference Felsenstein, J. (1973). Maximum-likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Systematic Zoology, 22, 240–249.CrossRef Felsenstein, J. (1973). Maximum-likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Systematic Zoology, 22, 240–249.CrossRef
73.
go back to reference Kashap, R. L., & Subas, S. (1974). Statistical estimation of parameters in a phylogenetic tree using a dynamic model of the substitutional process. Journal of Theoretical Biology, 47, 75–101.CrossRef Kashap, R. L., & Subas, S. (1974). Statistical estimation of parameters in a phylogenetic tree using a dynamic model of the substitutional process. Journal of Theoretical Biology, 47, 75–101.CrossRef
74.
go back to reference Langley, C., & Fitch, W. M. (1974). An examination of the constancy of the rate of molecular evolution. Journal of Molecular Evolution, 3, 161–177.CrossRef Langley, C., & Fitch, W. M. (1974). An examination of the constancy of the rate of molecular evolution. Journal of Molecular Evolution, 3, 161–177.CrossRef
75.
go back to reference Thompson, E. A. (1975). Human evolutionary trees. Cambridge/New York: Cambridge University Press. Thompson, E. A. (1975). Human evolutionary trees. Cambridge/New York: Cambridge University Press.
76.
go back to reference Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376.CrossRef Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376.CrossRef
77.
go back to reference Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.CrossRef Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.CrossRef
78.
go back to reference Saitou, N. (1988). Property and efficiency of the maximum likelihood method for molecular phylogeny. Journal of Molecular Evolution, 27, 261–273.CrossRef Saitou, N. (1988). Property and efficiency of the maximum likelihood method for molecular phylogeny. Journal of Molecular Evolution, 27, 261–273.CrossRef
79.
go back to reference Saitou, N. (1990). Maximum likelihood methods. Methods in Enzymology, 183, 584–598. Saitou, N. (1990). Maximum likelihood methods. Methods in Enzymology, 183, 584–598.
80.
go back to reference Hixson, J., & Brown, W. M. (1986). A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: Sequence, structure, evolution, and phylogenetic implications. Molecular Biology and Evolution, 3, 1–18. Hixson, J., & Brown, W. M. (1986). A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: Sequence, structure, evolution, and phylogenetic implications. Molecular Biology and Evolution, 3, 1–18.
81.
go back to reference Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27, 221–224.CrossRef Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27, 221–224.CrossRef
82.
go back to reference Horai, S., Hayasaka, K., Kondo, R., Tsugane, K., & Takahata, N. (1995). Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proceedings of the National Academy of Sciences of the United States of America, 92, 532–536.CrossRef Horai, S., Hayasaka, K., Kondo, R., Tsugane, K., & Takahata, N. (1995). Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proceedings of the National Academy of Sciences of the United States of America, 92, 532–536.CrossRef
83.
go back to reference Adachi, J., & Hasegawa, M. (1996). MOLPHY version 2.3: Programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs, 28, 1–150. Adachi, J., & Hasegawa, M. (1996). MOLPHY version 2.3: Programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs, 28, 1–150.
84.
go back to reference Yang, Z. (1997). PAML: A program package for phylogenetic analysis by maximum likelihood. CABIOS Applications Note, 13, 555–556. Yang, Z. (1997). PAML: A program package for phylogenetic analysis by maximum likelihood. CABIOS Applications Note, 13, 555–556.
85.
go back to reference Strimmer, K., & von Haeseler, A. (1996). Quartet puzzling: A quartet maximum-likelihood method for constructing phylogenetic trees. Molecular Biology and Evolution, 13, 1401–1409.CrossRef Strimmer, K., & von Haeseler, A. (1996). Quartet puzzling: A quartet maximum-likelihood method for constructing phylogenetic trees. Molecular Biology and Evolution, 13, 1401–1409.CrossRef
86.
go back to reference Ota, S., & Li, W.-H. (2000). NJML: A hybrid algorithm for the neighbor-joining and maximum-likelihood methods. Molecular Biology and Evolution, 17, 1401–1409.CrossRef Ota, S., & Li, W.-H. (2000). NJML: A hybrid algorithm for the neighbor-joining and maximum-likelihood methods. Molecular Biology and Evolution, 17, 1401–1409.CrossRef
87.
go back to reference Ota, S., & Li, W.-H. (2001). NJML+: An extension of the NJML method to handle protein sequence data and computer software implementation. Molecular Biology and Evolution, 18, 1983–1992.CrossRef Ota, S., & Li, W.-H. (2001). NJML+: An extension of the NJML method to handle protein sequence data and computer software implementation. Molecular Biology and Evolution, 18, 1983–1992.CrossRef
88.
go back to reference Yule, G. U. (1924). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S (Philosophical transaction of royal society of London, series B, Vol. 213, pp. 21–87). London: Harrison and Sons. Yule, G. U. (1924). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S (Philosophical transaction of royal society of London, series B, Vol. 213, pp. 21–87). London: Harrison and Sons.
89.
go back to reference Rannala, B., & Yang, Z. (1996). Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution, 17, 368–376. Rannala, B., & Yang, Z. (1996). Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution, 17, 368–376.
90.
go back to reference Huelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian inference of phylogenetic trees and its impact on evolutionary biology. Science, 294, 2310–2314.CrossRef Huelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian inference of phylogenetic trees and its impact on evolutionary biology. Science, 294, 2310–2314.CrossRef
91.
go back to reference Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press. Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.
92.
go back to reference Li, W.-H., & Guoy, M. (1991). Statistical methods for testing molecular phylogenies. In M. M. Miyamoto & J. Cracraft (Eds.), Phylogenetic analysis of DNA sequences (pp. 249–277). New York: Oxford University Press. Li, W.-H., & Guoy, M. (1991). Statistical methods for testing molecular phylogenies. In M. M. Miyamoto & J. Cracraft (Eds.), Phylogenetic analysis of DNA sequences (pp. 249–277). New York: Oxford University Press.
93.
go back to reference Yang, Z. H. (1996). Phylogenetic analysis using parsimony and likelihood methods. Journal of Molecular Evolution, 42, 294–307.CrossRef Yang, Z. H. (1996). Phylogenetic analysis using parsimony and likelihood methods. Journal of Molecular Evolution, 42, 294–307.CrossRef
94.
go back to reference Felsenstein, J. (1984). The statistical approach to inferring evolutionary trees and what it tells us about parsimony and compatibility. In T. Duncan & T. F. Steussy (Eds.), Cladistics: Perspectives on the reconstruction of evolutionary history (pp. 169–191). New York: Columbia University Press. Felsenstein, J. (1984). The statistical approach to inferring evolutionary trees and what it tells us about parsimony and compatibility. In T. Duncan & T. F. Steussy (Eds.), Cladistics: Perspectives on the reconstruction of evolutionary history (pp. 169–191). New York: Columbia University Press.
95.
go back to reference Bandelt, H. J., Forster, P., & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.CrossRef Bandelt, H. J., Forster, P., & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.CrossRef
96.
go back to reference Kruskal, J. B. (1956). On the shortest spanning subtree of the graph and the travelling salesman problem. Proceedings of the American Mathematical Society, 7, 48–57.MATHMathSciNetCrossRef Kruskal, J. B. (1956). On the shortest spanning subtree of the graph and the travelling salesman problem. Proceedings of the American Mathematical Society, 7, 48–57.MATHMathSciNetCrossRef
97.
go back to reference FarrisJ, S. (1970). Methods for computing Wagner trees. Systematic Zoology, 19, 83–92.CrossRef FarrisJ, S. (1970). Methods for computing Wagner trees. Systematic Zoology, 19, 83–92.CrossRef
98.
go back to reference Jinam, T. A., Hong, L. -C., Phipps, M. E., Stoneking, M., Ameen, M., Edo, J., HUGO Pan-Asian SNP Consortium, & Saitou, N. (2012). Evolutionary history of Continental Southeast Asians: “Early train” hypothesis based on genetic analysis of mitochondrial and autosomal DNA data. Molecular Biology and Evolution, 29, 3513–3527. Jinam, T. A., Hong, L. -C., Phipps, M. E., Stoneking, M., Ameen, M., Edo, J., HUGO Pan-Asian SNP Consortium, & Saitou, N. (2012). Evolutionary history of Continental Southeast Asians: “Early train” hypothesis based on genetic analysis of mitochondrial and autosomal DNA data. Molecular Biology and Evolution, 29, 3513–3527.
99.
go back to reference Kryukov, K., & Saitou, N. (2003). Netview: Application software for constructing and visually exploring phylogenetic networks. Genome Informatics, 14, 280–281. Kryukov, K., & Saitou, N. (2003). Netview: Application software for constructing and visually exploring phylogenetic networks. Genome Informatics, 14, 280–281.
100.
go back to reference Grunewald, S., Farslund, K., Dress, A., & Moulton, V. (2007). QNet: An agglomerative method for the construction of phylogenetic networks from weighted quartets. Molecular Biology and Evolution, 24, 532–538.CrossRef Grunewald, S., Farslund, K., Dress, A., & Moulton, V. (2007). QNet: An agglomerative method for the construction of phylogenetic networks from weighted quartets. Molecular Biology and Evolution, 24, 532–538.CrossRef
101.
go back to reference Wooley, S., Posada, D., & Crandall, K. A. (2007). A comparison of phylogenetic network methods using computer simulation. PLoS One, 3, e1913.CrossRef Wooley, S., Posada, D., & Crandall, K. A. (2007). A comparison of phylogenetic network methods using computer simulation. PLoS One, 3, e1913.CrossRef
102.
go back to reference Takahashi, K., & Nei, M. (2000). Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Molecular Biology and Evolution, 17, 1251–1258.CrossRef Takahashi, K., & Nei, M. (2000). Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Molecular Biology and Evolution, 17, 1251–1258.CrossRef
103.
go back to reference DeBry, R. W. (1992). The consistency of several phylogeny-inference methods under varying evolutionary rates. Molecular Biology and Evolution, 9, 537–551. DeBry, R. W. (1992). The consistency of several phylogeny-inference methods under varying evolutionary rates. Molecular Biology and Evolution, 9, 537–551.
104.
go back to reference Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution, 19, 153–170.CrossRef Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution, 19, 153–170.CrossRef
105.
go back to reference Tateno, Y., Takezaki, N., & Nei, M. (1994). Relative efficiencies of the maximum likelihood, neighbor-joining, and maximum parsimony methods when substitution rate varies with site. Molecular Biology and Evolution, 11, 261–277. Tateno, Y., Takezaki, N., & Nei, M. (1994). Relative efficiencies of the maximum likelihood, neighbor-joining, and maximum parsimony methods when substitution rate varies with site. Molecular Biology and Evolution, 11, 261–277.
106.
go back to reference Kuhner, M. K., & Felsenstein, J. (1994). A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Molecular Biology and Evolution, 11, 459–468. Erratum in: Molecular Biology and Evolution, 12, p. 525. Kuhner, M. K., & Felsenstein, J. (1994). A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Molecular Biology and Evolution, 11, 459–468. Erratum in: Molecular Biology and Evolution, 12, p. 525.
107.
go back to reference Nei, M., Kumar, S., & Takahashi, K. (1998). The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proceedings of the National Academy of Sciences of the United States of America, 95, 12390–12397.CrossRef Nei, M., Kumar, S., & Takahashi, K. (1998). The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proceedings of the National Academy of Sciences of the United States of America, 95, 12390–12397.CrossRef
108.
go back to reference Russo, C., Takezaki, N., & Nei, M. (1996). Efficiencies of different genes and different tree-making methods in recovering a known vertebrate phylogeny. Molecular Biology and Evolution, 13, 525–536.CrossRef Russo, C., Takezaki, N., & Nei, M. (1996). Efficiencies of different genes and different tree-making methods in recovering a known vertebrate phylogeny. Molecular Biology and Evolution, 13, 525–536.CrossRef
109.
go back to reference Nguyen, M. A. H., Klaere, S., & von Haeseler, A. (2011). MISFITS: Evaluating the goodness of fit between a phylogenetic model and an alignment. Molecular Biology and Evolution, 28, 143–152.CrossRef Nguyen, M. A. H., Klaere, S., & von Haeseler, A. (2011). MISFITS: Evaluating the goodness of fit between a phylogenetic model and an alignment. Molecular Biology and Evolution, 28, 143–152.CrossRef
110.
go back to reference Nguyen, M. A. H., Gesell, T., & von Haeseler, A. (2012). ImOSM: Intermittent evolution and robustness of phylogenetic methods. Molecular Biology and Evolution, 29, 663–673.CrossRef Nguyen, M. A. H., Gesell, T., & von Haeseler, A. (2012). ImOSM: Intermittent evolution and robustness of phylogenetic methods. Molecular Biology and Evolution, 29, 663–673.CrossRef
111.
go back to reference Karlin, S., & Ladunga, I. (1994). Comparisons of eukaryotic genomic sequences. Proceedings of the National Academy of Sciences of the United States of America, 91, 12832–12836.CrossRef Karlin, S., & Ladunga, I. (1994). Comparisons of eukaryotic genomic sequences. Proceedings of the National Academy of Sciences of the United States of America, 91, 12832–12836.CrossRef
112.
go back to reference Nakashima, H., Nishikawa, K., & Ooi, T. (1997). Differences in dinucleotide frequencies of human, yeast, and Escherichia coli genes. DNA Research, 4, 185–192.CrossRef Nakashima, H., Nishikawa, K., & Ooi, T. (1997). Differences in dinucleotide frequencies of human, yeast, and Escherichia coli genes. DNA Research, 4, 185–192.CrossRef
113.
go back to reference Karlin, S., Mrazek, J., & Campbell, A. (1997). Compositional biases of bacterial genomes and evolutionary implications. Journal of Bacteriology, 179, 3899–3913. Karlin, S., Mrazek, J., & Campbell, A. (1997). Compositional biases of bacterial genomes and evolutionary implications. Journal of Bacteriology, 179, 3899–3913.
114.
go back to reference Abe, T., et al. (2003). Informatics for unveiling hidden genome signatures. Genome Research, 13, 693–702.CrossRef Abe, T., et al. (2003). Informatics for unveiling hidden genome signatures. Genome Research, 13, 693–702.CrossRef
115.
go back to reference Pride, D. T., Meinersmann, R. J., Wassenaar, T. M., & Blaser, M. J. (2003). Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Research, 13, 145–155.CrossRef Pride, D. T., Meinersmann, R. J., Wassenaar, T. M., & Blaser, M. J. (2003). Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Research, 13, 145–155.CrossRef
116.
go back to reference Takahashi, M., Kryukov, K., & Saitou, N. (2009). Estimation of bacterial species phylogeny through oligonucleotide frequency distances. Genomics, 93, 525–533.CrossRef Takahashi, M., Kryukov, K., & Saitou, N. (2009). Estimation of bacterial species phylogeny through oligonucleotide frequency distances. Genomics, 93, 525–533.CrossRef
117.
go back to reference Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.
Metadata
Title
Tree and Network Building
Author
Naruya Saitou
Copyright Year
2013
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5304-7_16

Premium Partner