Skip to main content
Top

2020 | OriginalPaper | Chapter

7. Tribology of Intelligent Magnetorheological Materials

Authors : Rakesh Jinaga, Shreedhar Kolekar, T. Jagadeesha

Published in: Tribology in Materials and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magneto rheological (MR) fluid are categorized as one of smart materials, where the viscosity of the fluid enhances significantly under the influence of applied magnetic field. The fluids are set up by scattering micron scale magnetic particles into a fluid media called as carrier fluid with added substances for improving the rheological characteristics of fluid. The fundamental element of these fluid is the capacity to undergo change from fluidized state to semisolid state under controllable yield stress within couple of milliseconds in the wake of externally activated magnetic field. Lower magneto rheological impact and sedimentation of particles in MR fluids are the most challenging topics against the broad applications of MR fluid revolution in current ventures. Different techniques have been proposed and utilized by analysts to enhance the magneto rheological impact and stability of these liquids against the sedimentation. The primary focal point of this brief is to show a thorough survey on various strategies for synthesis and reduction in sedimentation rate of MR fluids. Besides, rheological models and use of MR liquids are talked about along this compilation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. Kordonsky, O. Ashour, C.A. Rogers, Magnetorheological fluids: materials, characterization, and devices. J. Intell. Mater. Syst. Struct. 7, 123–130 (1996)CrossRef W. Kordonsky, O. Ashour, C.A. Rogers, Magnetorheological fluids: materials, characterization, and devices. J. Intell. Mater. Syst. Struct. 7, 123–130 (1996)CrossRef
2.
go back to reference P.P. Phulé, J.M. Ginder, A.D. Jatkar, Synthesis and properties of magnetorheological fluids for active vibration control, in Materials for Smart Systems II (Materials Research Society, Boston, MA, 1996) P.P. Phulé, J.M. Ginder, A.D. Jatkar, Synthesis and properties of magnetorheological fluids for active vibration control, in Materials for Smart Systems II (Materials Research Society, Boston, MA, 1996)
3.
go back to reference K.D. Weiss et al., High strength magneto- and electro-rheological fluids. SAE Trans. 102, 425–430 (1993) K.D. Weiss et al., High strength magneto- and electro-rheological fluids. SAE Trans. 102, 425–430 (1993)
4.
go back to reference R.W. Phillips, Engineering applications of fluid with a variable yield stress, 1969 R.W. Phillips, Engineering applications of fluid with a variable yield stress, 1969
5.
go back to reference K.P. Tan, R. Stanway, W.A. Bullough, Braking responses of inertia/load by using an electro-rheological (ER) brake. J. Mechatron. 17, 277–289 (2007)CrossRef K.P. Tan, R. Stanway, W.A. Bullough, Braking responses of inertia/load by using an electro-rheological (ER) brake. J. Mechatron. 17, 277–289 (2007)CrossRef
6.
go back to reference E. Park, D. Stoikov, L. Falcao de Luz, A. Suleman, A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller. Mechatronics 16(16), 405 (2006)CrossRef E. Park, D. Stoikov, L. Falcao de Luz, A. Suleman, A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller. Mechatronics 16(16), 405 (2006)CrossRef
7.
go back to reference E.J. Park, L. Falcao da Luz, A. Suleman, Multidisciplinary design optimization of an automotive magnetorheological brake design. Comput. Struct. 86, 207 (2007)CrossRef E.J. Park, L. Falcao da Luz, A. Suleman, Multidisciplinary design optimization of an automotive magnetorheological brake design. Comput. Struct. 86, 207 (2007)CrossRef
8.
go back to reference Y. Shiao, Q.A. Nguyen, Structural analysis and validation of the multi-pole magnetorheological brake for motorcycles. Procedia Eng. 76, 24 (2014)CrossRef Y. Shiao, Q.A. Nguyen, Structural analysis and validation of the multi-pole magnetorheological brake for motorcycles. Procedia Eng. 76, 24 (2014)CrossRef
9.
go back to reference D.J. Carlson, Magnetorheological brake with integrated flywheel. U.S. Patent 6,186,290 Bl, 2001 D.J. Carlson, Magnetorheological brake with integrated flywheel. U.S. Patent 6,186,290 Bl, 2001
10.
go back to reference K. Karakoc, E.J. Park, A. Suleman, Design considerations for an automotive magneto-rheological brake. Mechatronics 18(8), 434 (2008)CrossRef K. Karakoc, E.J. Park, A. Suleman, Design considerations for an automotive magneto-rheological brake. Mechatronics 18(8), 434 (2008)CrossRef
11.
go back to reference G.M. Webb, Exercise apparatus and associated method including rheological fluid brake. U.S. Patent 5,810,696, 1998 G.M. Webb, Exercise apparatus and associated method including rheological fluid brake. U.S. Patent 5,810,696, 1998
12.
go back to reference S. Bydon, Construction and Operation of Magnetorheological Rotary Brake (Archiwum Process Control, 2002), p. 20 S. Bydon, Construction and Operation of Magnetorheological Rotary Brake (Archiwum Process Control, 2002), p. 20
13.
go back to reference B. Liu, W.H. Li, P.B. Kosasih, X.Z. Zhang, Development of an MR brake based haptic device. Smart Mater. Struct. 15, 1960 (2006)CrossRef B. Liu, W.H. Li, P.B. Kosasih, X.Z. Zhang, Development of an MR brake based haptic device. Smart Mater. Struct. 15, 1960 (2006)CrossRef
14.
go back to reference C.M. Chew, G.S. Hong, Development of a compact double-disk magnetorheological fluid brake. Robotica 25, 493 (2006) C.M. Chew, G.S. Hong, Development of a compact double-disk magnetorheological fluid brake. Robotica 25, 493 (2006)
15.
go back to reference W. Zhou, C.M. Chew, G.S. Hong, Development of a compact double-disk magnetorheological fluid brake. Robotica 55, 493 (2006) W. Zhou, C.M. Chew, G.S. Hong, Development of a compact double-disk magnetorheological fluid brake. Robotica 55, 493 (2006)
16.
go back to reference J.D. Carlson, What makes a good MR fluid? J. Intell. Mater. Syst. Struct. 13, 431 (2002)CrossRef J.D. Carlson, What makes a good MR fluid? J. Intell. Mater. Syst. Struct. 13, 431 (2002)CrossRef
17.
go back to reference P.P. Phule, A.D. Jatkar, Synthesis and processing magnetic iron cobalt alloy particles for high strength magnetorheological fluids, in 6th International Conference on ER Fluids, MR Suspensions and Their Applications (World Scientific, Yonezawa, Japan, 1997), pp. 503–510 P.P. Phule, A.D. Jatkar, Synthesis and processing magnetic iron cobalt alloy particles for high strength magnetorheological fluids, in 6th International Conference on ER Fluids, MR Suspensions and Their Applications (World Scientific, Yonezawa, Japan, 1997), pp. 503–510
18.
go back to reference Q. Nguyen, S. Choi, Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat. Smart Mater. Struct. 19 (2010)CrossRef Q. Nguyen, S. Choi, Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat. Smart Mater. Struct. 19 (2010)CrossRef
19.
go back to reference P.P. Phule, J.M. Ginder, Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility, in 6th International Conference on ER Fluids, MR Suspensions and Their Applications (World Scientific, Yonezawa, Japan, 1997), pp. 445–453 P.P. Phule, J.M. Ginder, Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility, in 6th International Conference on ER Fluids, MR Suspensions and Their Applications (World Scientific, Yonezawa, Japan, 1997), pp. 445–453
20.
go back to reference E. Lemaire, A. Meunier, G. Bossis, J. Liu, D. Felt, P. Bahtovoi, N. Matoussevitch, Influence of the particle size on the rheology of magnetorheological fluids. J. Rheol. 39, 1011–1020CrossRef E. Lemaire, A. Meunier, G. Bossis, J. Liu, D. Felt, P. Bahtovoi, N. Matoussevitch, Influence of the particle size on the rheology of magnetorheological fluids. J. Rheol. 39, 1011–1020CrossRef
21.
go back to reference C. Kormann, H. Laun, H. Ritcher, MR fluids with nanosized magnetic panicles. Int. J. Mod. Phys. B 10, 3167–3172 (1996)CrossRef C. Kormann, H. Laun, H. Ritcher, MR fluids with nanosized magnetic panicles. Int. J. Mod. Phys. B 10, 3167–3172 (1996)CrossRef
22.
go back to reference N. Rosenfeld, N.M. Wereley, R. Radhakrishnan, T.S. Sudarshan, Behavior of magnetorheological fluids utilizing nanopowder iron. Int. J. Mod. Phys. B 16(17–18), 2392–2398 (2002)CrossRef N. Rosenfeld, N.M. Wereley, R. Radhakrishnan, T.S. Sudarshan, Behavior of magnetorheological fluids utilizing nanopowder iron. Int. J. Mod. Phys. B 16(17–18), 2392–2398 (2002)CrossRef
23.
go back to reference A. Chaudhuri, G. Nang, N.M. Wereley, V. Tasovksi, R. Radhakrislman, Substitution of micron by nanometer scale powders in magnetorheological fluids. Int. J. Mod. Phys. B: Condens. Matter Phys. 19(7–9), 1374–1380 (2005)CrossRef A. Chaudhuri, G. Nang, N.M. Wereley, V. Tasovksi, R. Radhakrislman, Substitution of micron by nanometer scale powders in magnetorheological fluids. Int. J. Mod. Phys. B: Condens. Matter Phys. 19(7–9), 1374–1380 (2005)CrossRef
24.
go back to reference N.M. Werely, A. Chaudhuri, J.H. Yoo, S. John, S. Kotha, A. Suggs, R. Radhakrishnan, B.J. Love, T.S. Sudarshan, Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale. J. Intell. Mater. Syst. Struct. 17, 393–401 (2006)CrossRef N.M. Werely, A. Chaudhuri, J.H. Yoo, S. John, S. Kotha, A. Suggs, R. Radhakrishnan, B.J. Love, T.S. Sudarshan, Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale. J. Intell. Mater. Syst. Struct. 17, 393–401 (2006)CrossRef
25.
go back to reference B.J. Park, K.H. Song, H.J. Choi, Magnetic carbonyl lion nanoparticle based magnetorheological suspension and its characteristics. Mater. Lett. 63(15), 1350–1352 (2009) CrossRef B.J. Park, K.H. Song, H.J. Choi, Magnetic carbonyl lion nanoparticle based magnetorheological suspension and its characteristics. Mater. Lett. 63(15), 1350–1352 (2009) CrossRef
26.
go back to reference E.F. Burguera, B.J. Love, R. Sahul, G. Ngatu, N.M. Wereley, A physical basis for stability in bimodal dispersions including micrometer-sized particles and nanoparticles using both linear and non-linear models to describe yield. J. Intell. Mater. Syst. Struct. 19(11), 1361–1367 (2008)CrossRef E.F. Burguera, B.J. Love, R. Sahul, G. Ngatu, N.M. Wereley, A physical basis for stability in bimodal dispersions including micrometer-sized particles and nanoparticles using both linear and non-linear models to describe yield. J. Intell. Mater. Syst. Struct. 19(11), 1361–1367 (2008)CrossRef
27.
go back to reference F.F. Fang, H.J. Choi, M.S. Jhon, Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function. Colloids Surf. A 351(1–3), 46–51 (2009)CrossRef F.F. Fang, H.J. Choi, M.S. Jhon, Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function. Colloids Surf. A 351(1–3), 46–51 (2009)CrossRef
28.
go back to reference M.T. Lopez-Lopez, P. Kuzhir, A. Meunier, G. Bossis, Synthesis and magneto rheology of suspensions of cobalt particles with tunable particle size. J. Phys.: Conf. Ser. 149, 012073 (2009) M.T. Lopez-Lopez, P. Kuzhir, A. Meunier, G. Bossis, Synthesis and magneto rheology of suspensions of cobalt particles with tunable particle size. J. Phys.: Conf. Ser. 149, 012073 (2009)
29.
go back to reference S.T. Lim, M.S. Cho, I.B. Jang, H.J. Choi, Magnetorheological characterization of carbonyl iron suspension stabilized by finned silica. J. Magn. Magn. Mater. 282, 170–173 (2004)CrossRef S.T. Lim, M.S. Cho, I.B. Jang, H.J. Choi, Magnetorheological characterization of carbonyl iron suspension stabilized by finned silica. J. Magn. Magn. Mater. 282, 170–173 (2004)CrossRef
30.
go back to reference C. Fang, B.Y. Zhao, L.S. Chen, Q. Wu, N. Liu, K.A. Ku, The effect of the green additive guar gum on the properties of magnetorheological fluid. Smart Mater. Struct. 14, N1–N5 (2005)CrossRef C. Fang, B.Y. Zhao, L.S. Chen, Q. Wu, N. Liu, K.A. Ku, The effect of the green additive guar gum on the properties of magnetorheological fluid. Smart Mater. Struct. 14, N1–N5 (2005)CrossRef
31.
go back to reference P. Pilule, Magnetorheological fluid. U.S. Patent 5,985,168, 1999 P. Pilule, Magnetorheological fluid. U.S. Patent 5,985,168, 1999
32.
go back to reference V.R. Foista Iyanger, S.M. Yugelevic, Stabilization of magnetorheological fluid suspensions using a mixture of organoclays. U.S. Patent 6_io/7-P1 V.R. Foista Iyanger, S.M. Yugelevic, Stabilization of magnetorheological fluid suspensions using a mixture of organoclays. U.S. Patent 6_io/7-P1
33.
go back to reference B. Jang, H.B. Kim, J.Y. Lee, J.L. You, Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids. J. Appl. Phys. 97, 1–3 (2005)CrossRef B. Jang, H.B. Kim, J.Y. Lee, J.L. You, Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids. J. Appl. Phys. 97, 1–3 (2005)CrossRef
34.
go back to reference P. Phule, Synthesis of novel magnetorheological fluids. MRS Bull. 23, 23–24 (1998)CrossRef P. Phule, Synthesis of novel magnetorheological fluids. MRS Bull. 23, 23–24 (1998)CrossRef
35.
go back to reference C.W. Macosko, Rheology: Principles, Measurements, and Applications (VCH Publishers Inc., New York, 1994) C.W. Macosko, Rheology: Principles, Measurements, and Applications (VCH Publishers Inc., New York, 1994)
36.
go back to reference J. Rabinow, Magnetic fluid torque and force transmitting device. U.S. Patent 1951, USA J. Rabinow, Magnetic fluid torque and force transmitting device. U.S. Patent 1951, USA
37.
go back to reference N.M. Wereley, J.U. Cho, Y.T. Choi, S.B. Choi, Magnetorheological dampers in shear mode. Smart Mater. Struct. 17(1), 015022 (2008)CrossRef N.M. Wereley, J.U. Cho, Y.T. Choi, S.B. Choi, Magnetorheological dampers in shear mode. Smart Mater. Struct. 17(1), 015022 (2008)CrossRef
38.
go back to reference M.R. Jolly, J.W. Bender, R.T. Mathers, Indirect measurement of micro structural development in magnetorheological fluids, in 6th International Conference on ER Fluids, MR Suspensions and Their Applications (World Scientific, Yonezawa, Japan, 1997), pp. 471–477 M.R. Jolly, J.W. Bender, R.T. Mathers, Indirect measurement of micro structural development in magnetorheological fluids, in 6th International Conference on ER Fluids, MR Suspensions and Their Applications (World Scientific, Yonezawa, Japan, 1997), pp. 471–477
39.
go back to reference M. Kciuk, R. Turczyn, Properties and application of magnetorheological fluids. J. Achiev. Mater. Manuf. Eng. 18, 127–130 (2006) M. Kciuk, R. Turczyn, Properties and application of magnetorheological fluids. J. Achiev. Mater. Manuf. Eng. 18, 127–130 (2006)
40.
go back to reference P.J. Rankin, A.T. Horvath, D.J. Klingenberg, Magnetorheology in viscoplastic media. Rheol. Acta 38, 471–477 (1999)CrossRef P.J. Rankin, A.T. Horvath, D.J. Klingenberg, Magnetorheology in viscoplastic media. Rheol. Acta 38, 471–477 (1999)CrossRef
41.
go back to reference V.R. Iyanger, Durable magnetorheological fluid compositions. U.S. Patent 6,818,143, 2004 V.R. Iyanger, Durable magnetorheological fluid compositions. U.S. Patent 6,818,143, 2004
42.
go back to reference M.A. Golden, J.C. Ulieny, K.S. Snavely, A.L. Smith, Magnetorheological fluids. U.S. Patent 6,932,917, 2005 M.A. Golden, J.C. Ulieny, K.S. Snavely, A.L. Smith, Magnetorheological fluids. U.S. Patent 6,932,917, 2005
43.
go back to reference J. Rabinow, The magnetic fluid clutch. AIEE Trans. 67, 1308 (1948) J. Rabinow, The magnetic fluid clutch. AIEE Trans. 67, 1308 (1948)
44.
go back to reference P. Poddar, J.L. Wilson, H. Srikanth, J.-H. Yoo, N.N. Wereley, S. Kotha, L. Barthouty, R. Radhakrishnan, Nanocomposite magneto-rheological fluids with uniformly dispersed Fe nanoparticles. J. Nanosci. Nanotechnol. 4(1–2), 192–196 (2004)CrossRef P. Poddar, J.L. Wilson, H. Srikanth, J.-H. Yoo, N.N. Wereley, S. Kotha, L. Barthouty, R. Radhakrishnan, Nanocomposite magneto-rheological fluids with uniformly dispersed Fe nanoparticles. J. Nanosci. Nanotechnol. 4(1–2), 192–196 (2004)CrossRef
45.
go back to reference J.D. Carlson, M.R. Jolly, MR fluid, foam and elastomer devices. Mechatronics 10, 555–569 (2000)CrossRef J.D. Carlson, M.R. Jolly, MR fluid, foam and elastomer devices. Mechatronics 10, 555–569 (2000)CrossRef
46.
go back to reference J.D. Vicente, D.J. Klingenberg, R. Hidalgo-Alvarez, Magnetorheological fluids: a review. Soft Matter 7, 3701–3710 (2011)CrossRef J.D. Vicente, D.J. Klingenberg, R. Hidalgo-Alvarez, Magnetorheological fluids: a review. Soft Matter 7, 3701–3710 (2011)CrossRef
47.
go back to reference I. Bica, Y.D. Liu, H.J. Choi, Physical characteristics of magnetorheological suspensions and their applications. J. Ind. Eng. Chem. 19, 394–406 (2013)CrossRef I. Bica, Y.D. Liu, H.J. Choi, Physical characteristics of magnetorheological suspensions and their applications. J. Ind. Eng. Chem. 19, 394–406 (2013)CrossRef
48.
go back to reference J. Wang, G. Meng, Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering (Part L). Proc. Inst. Mech. Eng. 215, 165–174 (2001)CrossRef J. Wang, G. Meng, Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering (Part L). Proc. Inst. Mech. Eng. 215, 165–174 (2001)CrossRef
49.
go back to reference A.G. Olabi, A. Grunwald, Design and application of magneto-rheological fluid. Mater. Des. 28, 2658–2664 (2007)CrossRef A.G. Olabi, A. Grunwald, Design and application of magneto-rheological fluid. Mater. Des. 28, 2658–2664 (2007)CrossRef
50.
go back to reference W.W. Chooi, S.O. Oyadiji, Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions. Comput. Struct. 86, 473–482 (2008)CrossRef W.W. Chooi, S.O. Oyadiji, Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions. Comput. Struct. 86, 473–482 (2008)CrossRef
51.
go back to reference C. Guerrero-Sanchez, T. Lara-Ceniceros, E. Jimenez-Regalado, M. Rasa, U.S. Schubert, Magnetorheological fluids based on ionic liquids. Adv. Mater. 19, 1740–1747 (2007)CrossRef C. Guerrero-Sanchez, T. Lara-Ceniceros, E. Jimenez-Regalado, M. Rasa, U.S. Schubert, Magnetorheological fluids based on ionic liquids. Adv. Mater. 19, 1740–1747 (2007)CrossRef
52.
go back to reference J.H. Park, B.D. Chin, O.O. Park, Rheological properties and stabilization of magnetorheological fluids in a water-in-oil emulsion. J. Colloid Interface Sci. 240, 349–354 (2001)CrossRef J.H. Park, B.D. Chin, O.O. Park, Rheological properties and stabilization of magnetorheological fluids in a water-in-oil emulsion. J. Colloid Interface Sci. 240, 349–354 (2001)CrossRef
Metadata
Title
Tribology of Intelligent Magnetorheological Materials
Authors
Rakesh Jinaga
Shreedhar Kolekar
T. Jagadeesha
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-47451-5_7

Premium Partners