Skip to main content
Top
Published in: Journal of Nanoparticle Research 10/2018

01-10-2018 | Research Paper

Triggering basal plane active sites of monolayer MoS2 for the hydrogen evolution reaction by phosphorus doping

Authors: Wenwu Shi, Shiyun Wu, Zhiguo Wang

Published in: Journal of Nanoparticle Research | Issue 10/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Monolayer MoS2 has attracted much attention due to its catalytic performance in water splitting. However, the low electronic conductivity and limited number of active catalytic sites of monolayer MoS2 limit the hydrogen production efficiency. In this work, the effect of phosphorus doping on the electronic characteristics and catalytic activity of the hydrogen evolution reaction in monolayer MoS2 was studied using density functional theory. A semiconductor to conductor transformation occurs in monolayer MoS2(1-x)Px for x larger than 0.25. The Gibbs free energy is greatly reduced from 2.18 to 0.03 eV for the adsorption of hydrogen on monolayer MoS0.5P0.75. The Gibbs free energy for hydrogen atom adsorption on monolayer MoS0.5P0.75 is between 0.03 and 0.16 eV with hydrogen coverage θH = 1/12–7/12 ML. The Gibbs free energy is close to zero, indicating that phosphorus doping can trigger the basal plane active sites on monolayer MoS2; thus, this work provides a new design for the improvement of the catalytic activity of two-dimensional transition metal dichalcogenide-based catalysts by phosphorus doping.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference An YR, Fan XL, Luo ZF, Lau WM (2017) Nanopolygons of monolayer MS2: best morphology and size for HER catalysis. Nano Lett 17:368–376CrossRef An YR, Fan XL, Luo ZF, Lau WM (2017) Nanopolygons of monolayer MS2: best morphology and size for HER catalysis. Nano Lett 17:368–376CrossRef
go back to reference Ataca C, Şahin H, Ciraci S (2012) Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C 116:8983–8999CrossRef Ataca C, Şahin H, Ciraci S (2012) Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C 116:8983–8999CrossRef
go back to reference Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal 4:3957–3971CrossRef Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal 4:3957–3971CrossRef
go back to reference Berland K, Hyldgaard P (2014) Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys Rev B 89:035412CrossRef Berland K, Hyldgaard P (2014) Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys Rev B 89:035412CrossRef
go back to reference Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I (2008) Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 140:219CrossRef Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I (2008) Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 140:219CrossRef
go back to reference Çakır D, Peeters FM, Sevik C (2014) Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: a comparative study. Appl Phys Lett 104:203110CrossRef Çakır D, Peeters FM, Sevik C (2014) Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: a comparative study. Appl Phys Lett 104:203110CrossRef
go back to reference Capitani F, Höppner M, Joseph B, Malavasi L, Artioli GA, Baldassarre L, Perucchi A, Piccinini M, Lupi S, Dore P (2013) Combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C22H14. Phys Rev B 88:4745–4751CrossRef Capitani F, Höppner M, Joseph B, Malavasi L, Artioli GA, Baldassarre L, Perucchi A, Piccinini M, Lupi S, Dore P (2013) Combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C22H14. Phys Rev B 88:4745–4751CrossRef
go back to reference Chen X, Wang Z, Qiu Y, Zhang J, Liu G, Zheng W, Feng W, Cao W, Hu P, Hu W (2016) Controlled growth of vertical 3D MoS2(1-x)Se2x nanosheets for an efficient and stable hydrogen evolution reaction. J Mater Chem A 4:18060–18066CrossRef Chen X, Wang Z, Qiu Y, Zhang J, Liu G, Zheng W, Feng W, Cao W, Hu P, Hu W (2016) Controlled growth of vertical 3D MoS2(1-x)Se2x nanosheets for an efficient and stable hydrogen evolution reaction. J Mater Chem A 4:18060–18066CrossRef
go back to reference Chhetri M, Gupta U, Yadgarov L, Rosentsveig R, Tenne R, Rao CN (2015) Beneficial effect of Re doping on the electrochemical HER activity of MoS2 fullerenes. Dalton Trans 44:16399–16404CrossRef Chhetri M, Gupta U, Yadgarov L, Rosentsveig R, Tenne R, Rao CN (2015) Beneficial effect of Re doping on the electrochemical HER activity of MoS2 fullerenes. Dalton Trans 44:16399–16404CrossRef
go back to reference Chou SS, Sai N, Lu P, Coker EN, Liu S, Artyushkova K, Luk TS, Kaehr B, Brinker CJ (2015) Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat Commun 6:8311CrossRef Chou SS, Sai N, Lu P, Coker EN, Liu S, Artyushkova K, Luk TS, Kaehr B, Brinker CJ (2015) Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat Commun 6:8311CrossRef
go back to reference Chu SQ, Park C, Shen GY (2016) Structural characteristic correlated to the electronic band gap in MoS2. Phys Rev B 94, 020101(R) Chu SQ, Park C, Shen GY (2016) Structural characteristic correlated to the electronic band gap in MoS2. Phys Rev B 94, 020101(R)
go back to reference Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X (2015) Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci 8:1594–1601CrossRef Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X (2015) Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci 8:1594–1601CrossRef
go back to reference Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116CrossRef Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116CrossRef
go back to reference Finger LW (1985) Physical properties of crystals : their representation by tensors and matrices. Clarendon Press Finger LW (1985) Physical properties of crystals : their representation by tensors and matrices. Clarendon Press
go back to reference Gao M-R, Liang J-X, Zheng Y-R, Xu Y-F, Jiang J, Gao Q, Li J, Yu S-H (2015) An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat Commun 6:6892CrossRef Gao M-R, Liang J-X, Zheng Y-R, Xu Y-F, Jiang J, Gao Q, Li J, Yu S-H (2015) An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat Commun 6:6892CrossRef
go back to reference Gao DQ, Xia BR, Zhu CR, Du YH, Xi PX, Xue DS, Ding J, Wang J (2018) Activation of the MoSe2 basal plane and Se-edge by B doping for enhanced hydrogen evolution. J Mater Chem A 6:510–515CrossRef Gao DQ, Xia BR, Zhu CR, Du YH, Xi PX, Xue DS, Ding J, Wang J (2018) Activation of the MoSe2 basal plane and Se-edge by B doping for enhanced hydrogen evolution. J Mater Chem A 6:510–515CrossRef
go back to reference Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913CrossRef Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913CrossRef
go back to reference Guo Y, Zhang X, Zhang X, You T (2015) Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution. J Mater Chem A 3:15927–15934CrossRef Guo Y, Zhang X, Zhang X, You T (2015) Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution. J Mater Chem A 3:15927–15934CrossRef
go back to reference Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102CrossRef Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102CrossRef
go back to reference Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086CrossRef Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086CrossRef
go back to reference Karunadasa HI, Montalvo E, Sun Y, Majda M, Long JR, Chang CJ (2012) A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335:698–702CrossRef Karunadasa HI, Montalvo E, Sun Y, Majda M, Long JR, Chang CJ (2012) A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335:698–702CrossRef
go back to reference Kasowski RV (1973) Band structure of MoS2 and NbS2. Phys Rev Lett 30:1175–1178CrossRef Kasowski RV (1973) Band structure of MoS2 and NbS2. Phys Rev Lett 30:1175–1178CrossRef
go back to reference Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963–969CrossRef Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963–969CrossRef
go back to reference Laursen AB, Kegnaes S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 5:5577–5591CrossRef Laursen AB, Kegnaes S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 5:5577–5591CrossRef
go back to reference Li Y, Zhou Z, Zhang S, Chen Z (2008) MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J Am Chem Soc 130:16739–16744CrossRef Li Y, Zhou Z, Zhang S, Chen Z (2008) MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J Am Chem Soc 130:16739–16744CrossRef
go back to reference Li BB, Qiao SZ, Zheng XR, Yang XJ, Cui ZD, Zhu SL, Li ZY, Liang YQ (2015) Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. J Power Sources 284:68–76CrossRef Li BB, Qiao SZ, Zheng XR, Yang XJ, Cui ZD, Zhu SL, Li ZY, Liang YQ (2015) Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. J Power Sources 284:68–76CrossRef
go back to reference Lin SH, Kuo JL (2015) Activating and tuning basal planes of MoO2, MoS2, and MoSe2 for hydrogen evolution reaction. Phys Chem Chem Phys 17:29305–29310CrossRef Lin SH, Kuo JL (2015) Activating and tuning basal planes of MoO2, MoS2, and MoSe2 for hydrogen evolution reaction. Phys Chem Chem Phys 17:29305–29310CrossRef
go back to reference Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277CrossRef Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277CrossRef
go back to reference Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010a) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805CrossRef Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010a) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805CrossRef
go back to reference Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010b) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:474–479CrossRef Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010b) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:474–479CrossRef
go back to reference Mi Q, Santori E, Lewis N (2010) Solar water splitting cells Mi Q, Santori E, Lewis N (2010) Solar water splitting cells
go back to reference Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90:224104CrossRef Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90:224104CrossRef
go back to reference Ouyang Y, Ling C, Chen Q, Wang Z, Shi L, Wang J (2016) Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem Mater 28:4390–4396CrossRef Ouyang Y, Ling C, Chen Q, Wang Z, Shi L, Wang J (2016) Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem Mater 28:4390–4396CrossRef
go back to reference Pan H (2014) Metal dichalcogenides monolayers: novel catalysts for electrochemical hydrogen production. Sci Rep 4:5348CrossRef Pan H (2014) Metal dichalcogenides monolayers: novel catalysts for electrochemical hydrogen production. Sci Rep 4:5348CrossRef
go back to reference Pan H (2016) Tension-enhanced hydrogen evolution reaction on vanadium disulfide monolayer. Nanoscale Res Lett 11:113CrossRef Pan H (2016) Tension-enhanced hydrogen evolution reaction on vanadium disulfide monolayer. Nanoscale Res Lett 11:113CrossRef
go back to reference Pandey M, Vojvodic A, Thygesen KS, Jacobsen KW (2015) Two-dimensional metal dichalcogenides and oxides for hydrogen evolution: a computational screening approach. J Phys Chem Lett 6:1577–1585CrossRef Pandey M, Vojvodic A, Thygesen KS, Jacobsen KW (2015) Two-dimensional metal dichalcogenides and oxides for hydrogen evolution: a computational screening approach. J Phys Chem Lett 6:1577–1585CrossRef
go back to reference Peng Q, De S (2013) Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage. Phys Chem Chem Phys 15:19427–19437CrossRef Peng Q, De S (2013) Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage. Phys Chem Chem Phys 15:19427–19437CrossRef
go back to reference Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079CrossRef Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079CrossRef
go back to reference Qi J, Li X, Qian X, Feng J (2013) Bandgap engineering of rippled MoS2 monolayer under external electric field. Appl Phys Lett 102:173112CrossRef Qi J, Li X, Qian X, Feng J (2013) Bandgap engineering of rippled MoS2 monolayer under external electric field. Appl Phys Lett 102:173112CrossRef
go back to reference Qian X, Liu J, Fu L, Li J (2014) Quantum spin hall effect in two-dimensional transition metal dichalcogenides. Science 346:1344–1347CrossRef Qian X, Liu J, Fu L, Li J (2014) Quantum spin hall effect in two-dimensional transition metal dichalcogenides. Science 346:1344–1347CrossRef
go back to reference Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150CrossRef Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150CrossRef
go back to reference Ren X, Ma Q, Fan H, Pang L, Zhang Y, Yao Y, Ren X, Liu SF (2015) A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction. Chem Commun 51:15997–16000CrossRef Ren X, Ma Q, Fan H, Pang L, Zhang Y, Yao Y, Ren X, Liu SF (2015) A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction. Chem Commun 51:15997–16000CrossRef
go back to reference Sabatier P (1913) La Catalyse en Chimie Organique, Librairie Polytechnique, Paris Sabatier P (1913) La Catalyse en Chimie Organique, Librairie Polytechnique, Paris
go back to reference Schmickler W, Trasatti S (2006) Comment on “Trends in the Exchange Current for Hydrogen Evolution” [J. Electrochem. Soc., 152, J23 (2005)]. J Electrochem Soc 153:L31CrossRef Schmickler W, Trasatti S (2006) Comment on “Trends in the Exchange Current for Hydrogen Evolution” [J. Electrochem. Soc., 152, J23 (2005)]. J Electrochem Soc 153:L31CrossRef
go back to reference Segall MD, Shah R, Pickard CJ, Payne MC (1996) Population analysis of plane-wave electronic structure calculations of bulk materials. Phys Rev B 54:16317–16320CrossRef Segall MD, Shah R, Pickard CJ, Payne MC (1996) Population analysis of plane-wave electronic structure calculations of bulk materials. Phys Rev B 54:16317–16320CrossRef
go back to reference Seo B, Jung GY, Sa YJ, Jeong HY, Cheon JY, Lee JH, Kim HY, Kim JC, Shin HS, Kwak SK, Joo SH (2015) Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano 9:3728–3739CrossRef Seo B, Jung GY, Sa YJ, Jeong HY, Cheon JY, Lee JH, Kim HY, Kim JC, Shin HS, Kwak SK, Joo SH (2015) Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano 9:3728–3739CrossRef
go back to reference Shi W, Wang Z, Li Z, Fu YQ (2016) Electric field enhanced adsorption and diffusion of adatoms in MoS2 monolayer. Mater Chem Phys 183:392–397CrossRef Shi W, Wang Z, Li Z, Fu YQ (2016) Electric field enhanced adsorption and diffusion of adatoms in MoS2 monolayer. Mater Chem Phys 183:392–397CrossRef
go back to reference Shuttleworth IG (2013) Investigation of the H–Cu and Cu–Cu bonds in hydrogenated Cu. J Phys Chem Solids 74:128–134CrossRef Shuttleworth IG (2013) Investigation of the H–Cu and Cu–Cu bonds in hydrogenated Cu. J Phys Chem Solids 74:128–134CrossRef
go back to reference Shuttleworth IG (2015) Strategies for reducing basis set superposition error (BSSE) in O/AU and O/Ni. J Phys Chem Solids 86:19–26CrossRef Shuttleworth IG (2015) Strategies for reducing basis set superposition error (BSSE) in O/AU and O/Ni. J Phys Chem Solids 86:19–26CrossRef
go back to reference Skulason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jonsson H, Norskov JK (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys Chem Chem Phys 9:3241–3250CrossRef Skulason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jonsson H, Norskov JK (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys Chem Chem Phys 9:3241–3250CrossRef
go back to reference Skúlason E, Tripkovic V, Björketun ME, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov JK (2010) Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C 114:18182–18197CrossRef Skúlason E, Tripkovic V, Björketun ME, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov JK (2010) Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C 114:18182–18197CrossRef
go back to reference Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779CrossRef Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779CrossRef
go back to reference Song I, Park C, Choi HC (2015) Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Adv 5:7495–7514CrossRef Song I, Park C, Choi HC (2015) Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Adv 5:7495–7514CrossRef
go back to reference Ting LRL, Deng Y, Ma L, Zhang Y-J, Peterson AA, Yeo BS (2016) Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal 6:861–867CrossRef Ting LRL, Deng Y, Ma L, Zhang Y-J, Peterson AA, Yeo BS (2016) Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal 6:861–867CrossRef
go back to reference Topsakal M, Cahangirov S, Ciraci S (2010) The response of mechanical and electronic properties of graphane to the elastic strain. Appl Phys Lett 96:091912CrossRef Topsakal M, Cahangirov S, Ciraci S (2010) The response of mechanical and electronic properties of graphane to the elastic strain. Appl Phys Lett 96:091912CrossRef
go back to reference Tsai C, Abild-Pedersen F, Norskov JK (2014a) Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett 14:1381–1387CrossRef Tsai C, Abild-Pedersen F, Norskov JK (2014a) Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett 14:1381–1387CrossRef
go back to reference Tsai C, Chan K, Abild-Pedersen F, Norskov JK (2014b) Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Phys Chem Chem Phys 16:13156–13164CrossRef Tsai C, Chan K, Abild-Pedersen F, Norskov JK (2014b) Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Phys Chem Chem Phys 16:13156–13164CrossRef
go back to reference Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013a) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227CrossRef Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013a) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227CrossRef
go back to reference Voiry D, Yamaguchi H, Li J, Silva R, Alves DC, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013b) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12:850–855CrossRef Voiry D, Yamaguchi H, Li J, Silva R, Alves DC, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013b) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12:850–855CrossRef
go back to reference Wang H, Tsai C, Kong D, Chan K, Abild-Pedersen F, Nørskov JK, Cui Y (2015) Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res 8:566–575CrossRef Wang H, Tsai C, Kong D, Chan K, Abild-Pedersen F, Nørskov JK, Cui Y (2015) Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res 8:566–575CrossRef
go back to reference Wypych F, Schollhorn R (1992) 1T-MoS2, a new metallic modification of molybdenum disulfide. J Chem Soc Chem Commun 1386–1388 Wypych F, Schollhorn R (1992) 1T-MoS2, a new metallic modification of molybdenum disulfide. J Chem Soc Chem Commun 1386–1388
go back to reference Xiao W, Liu P, Zhang J, Song W, Feng YP, Gao D, Ding J (2017) Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution. Adv Energy Mater 7:1602086CrossRef Xiao W, Liu P, Zhang J, Song W, Feng YP, Gao D, Ding J (2017) Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution. Adv Energy Mater 7:1602086CrossRef
go back to reference Yorulmaz U, Ozden A, Perkgoz NK, Ay F, Sevik C (2016) Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation. Nanotechnology 27:335702CrossRef Yorulmaz U, Ozden A, Perkgoz NK, Ay F, Sevik C (2016) Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation. Nanotechnology 27:335702CrossRef
Metadata
Title
Triggering basal plane active sites of monolayer MoS2 for the hydrogen evolution reaction by phosphorus doping
Authors
Wenwu Shi
Shiyun Wu
Zhiguo Wang
Publication date
01-10-2018
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 10/2018
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-018-4379-z

Other articles of this Issue 10/2018

Journal of Nanoparticle Research 10/2018 Go to the issue

Premium Partners