Skip to main content
Top
Published in: Journal of Nanoparticle Research 10/2018

01-10-2018 | Perspectives

Tailoring dendrimer conjugates for biomedical applications: the impact of altering hydrophobicity

Authors: Mark M. Banaszak Holl, Casey A. Dougherty, Sriram Vaidyanathan

Published in: Journal of Nanoparticle Research | Issue 10/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydrophobicity is known to play a key role in the biological distribution of materials but is often an overlooked parameter when conjugating targeting agents, drugs, and dyes to dendrimers. This review examines the impact of hydrophobic variation in stochastically conjugated dendrimers as well as materials where synthetic methods or approaches to purification provide more controlled samples. Hydrophobic interactions are considered for three general classes: (1) terminal functional group modifications, (2) bioactive small molecules chosen to interact with receptors and proteins as targeting agents and/or drugs, and (3) imaging agents to track biological activity. Impacts on membrane interaction and cellular uptake, biodistribution, interaction with transport proteins, and pharmacokinetics are discussed. The size range of the dendrimers discussed is ~ 1–10 nm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Chen J, van Dongen MA, Merzel RL, Dougherty CA, Orr BG, Kanduluru AK, Low PS, Marsh ENG, Holl MMB (2016) Substrate-triggered exosite binding: synergistic dendrimer/folic acid action for achieving specific, tight-binding to folate binding protein. Biomacromolecules 17(3):922–927CrossRef Chen J, van Dongen MA, Merzel RL, Dougherty CA, Orr BG, Kanduluru AK, Low PS, Marsh ENG, Holl MMB (2016) Substrate-triggered exosite binding: synergistic dendrimer/folic acid action for achieving specific, tight-binding to folate binding protein. Biomacromolecules 17(3):922–927CrossRef
go back to reference Dougherty CA, Furgal JC, Van Dongen MA, Goodson T, Banaszak Holl MM, Manono J, DiMaggio S (2014) Isolation and characterization of precise/dye dendrimer ratios. Chem Eur J 20:4638–4645CrossRef Dougherty CA, Furgal JC, Van Dongen MA, Goodson T, Banaszak Holl MM, Manono J, DiMaggio S (2014) Isolation and characterization of precise/dye dendrimer ratios. Chem Eur J 20:4638–4645CrossRef
go back to reference Dougherty CA, Vaidyanathan S, Banaszak Holl MM (2015) Fluorophore:dendrimer ratio impacts cellular uptake and fluorescence lifetime. Bioconjug Chem 26:304–315CrossRef Dougherty CA, Vaidyanathan S, Banaszak Holl MM (2015) Fluorophore:dendrimer ratio impacts cellular uptake and fluorescence lifetime. Bioconjug Chem 26:304–315CrossRef
go back to reference Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141CrossRef Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141CrossRef
go back to reference Florence AT, Sakthivel T, Toth I (2000) Oral uptake and translocation of a polylysine dendrimer with a lipid surface. J Control Release 65(1–2):253–259CrossRef Florence AT, Sakthivel T, Toth I (2000) Oral uptake and translocation of a polylysine dendrimer with a lipid surface. J Control Release 65(1–2):253–259CrossRef
go back to reference Haque S, McLeod VM, Jones S, Fung S, Whittaker M, McIntosh M, Pouton C, Owen DJ, Porter CJH, Kaminskas LM (2017) Effect of increased surface hydrophobicity via drug conjugation on the clearance of inhaled PEGylated polylysine dendrimers. Eur J Pharm Biopharm 119:408–418CrossRef Haque S, McLeod VM, Jones S, Fung S, Whittaker M, McIntosh M, Pouton C, Owen DJ, Porter CJH, Kaminskas LM (2017) Effect of increased surface hydrophobicity via drug conjugation on the clearance of inhaled PEGylated polylysine dendrimers. Eur J Pharm Biopharm 119:408–418CrossRef
go back to reference Janaszewska A, Studzian M, Petersen JF, Ficker M, Paolucci V, Christensen JB, Tomalia DA, Klajnert-Maculewicz B (2017) Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups-its uptake, efflux, and location in a cell. Colloids Surf B Biointerfaces 159:211–216CrossRef Janaszewska A, Studzian M, Petersen JF, Ficker M, Paolucci V, Christensen JB, Tomalia DA, Klajnert-Maculewicz B (2017) Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups-its uptake, efflux, and location in a cell. Colloids Surf B Biointerfaces 159:211–216CrossRef
go back to reference Jevprasesphant R, Penny J, Attwood D, McKeown NB, D'Emanuele A (2003) Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res 20(10):1543–1550CrossRef Jevprasesphant R, Penny J, Attwood D, McKeown NB, D'Emanuele A (2003) Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res 20(10):1543–1550CrossRef
go back to reference Jevprasesphant R, Penny J, Attwood D, D'Emanuele A (2004) Transport of dendrimer nanocarriers through epithelial cells via the transcellular route. J Control Release 97(2):259–267CrossRef Jevprasesphant R, Penny J, Attwood D, D'Emanuele A (2004) Transport of dendrimer nanocarriers through epithelial cells via the transcellular route. J Control Release 97(2):259–267CrossRef
go back to reference Kaminskas LM, Boyd BJ, Porter CJH (2011) Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine 6:1063–1084CrossRef Kaminskas LM, Boyd BJ, Porter CJH (2011) Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine 6:1063–1084CrossRef
go back to reference Kaminskas LM, McLeod VM, Ryan GM, Kelly BD, Haynes JM, Williamson M, Thienthong N, Owen DJ, Porter CJH (2014) Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 183:18–26CrossRef Kaminskas LM, McLeod VM, Ryan GM, Kelly BD, Haynes JM, Williamson M, Thienthong N, Owen DJ, Porter CJH (2014) Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 183:18–26CrossRef
go back to reference Kannan S, Dai H, Navath RS, Balakrishnan B, Jyoti A, Janisse J, Romero R, Kannan RM (2012) Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci Transl Med 4(130):130ra146CrossRef Kannan S, Dai H, Navath RS, Balakrishnan B, Jyoti A, Janisse J, Romero R, Kannan RM (2012) Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci Transl Med 4(130):130ra146CrossRef
go back to reference Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22(10):1879–1903CrossRef Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22(10):1879–1903CrossRef
go back to reference Kelly CV, Leroueil PR, Orr BG, Holl MMB, Andricioaei I (2008) Poly(amidoamine) dendrimers on lipid bilayers II: effects of bilayer phase and dendrimer termination. J Phys Chem B 112(31):9346–9353CrossRef Kelly CV, Leroueil PR, Orr BG, Holl MMB, Andricioaei I (2008) Poly(amidoamine) dendrimers on lipid bilayers II: effects of bilayer phase and dendrimer termination. J Phys Chem B 112(31):9346–9353CrossRef
go back to reference Kitchens KM, Kolhatkar RB, Swaan PW, Eddington ND, Ghandehari H (2006) Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm Res 23(12):2818–2826CrossRef Kitchens KM, Kolhatkar RB, Swaan PW, Eddington ND, Ghandehari H (2006) Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm Res 23(12):2818–2826CrossRef
go back to reference Kojima C, Regino C, Umeda Y, Kobayashi H, Kono K (2010) Influence of dendrimer generation and polyethylene glycol length on the biodistribution of PEGylated dendrimers. Int J Pharm 383(1–2):293–296CrossRef Kojima C, Regino C, Umeda Y, Kobayashi H, Kono K (2010) Influence of dendrimer generation and polyethylene glycol length on the biodistribution of PEGylated dendrimers. Int J Pharm 383(1–2):293–296CrossRef
go back to reference Kono K, Liu MJ, Frechet JMJ (1999) Design of dendritic macromolecules containing folate or methotrexate residues. Bioconjug Chem 10(6):1115–1121CrossRef Kono K, Liu MJ, Frechet JMJ (1999) Design of dendritic macromolecules containing folate or methotrexate residues. Bioconjug Chem 10(6):1115–1121CrossRef
go back to reference Kono K, Akiyama H, Takahashi T, Takagishi T, Harada A (2005) Transfection activity of polyamidoamine dendrimers having hydrophobic amino acid residues in the periphery. Bioconjug Chem 16(1):208–214CrossRef Kono K, Akiyama H, Takahashi T, Takagishi T, Harada A (2005) Transfection activity of polyamidoamine dendrimers having hydrophobic amino acid residues in the periphery. Bioconjug Chem 16(1):208–214CrossRef
go back to reference Kukowska-Latallo JF, Candido KA, Cao ZY, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324CrossRef Kukowska-Latallo JF, Candido KA, Cao ZY, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324CrossRef
go back to reference Larson N, Ghandehari H (2012) Polymeric conjugates for drug delivery. Chem Mater 24(5):840–853CrossRef Larson N, Ghandehari H (2012) Polymeric conjugates for drug delivery. Chem Mater 24(5):840–853CrossRef
go back to reference Lei J, Rosenzweig JM, Mishra MK, Alshehri W, Brancusi F, McLane M, Almalki A, Bahabry R, Arif H, Rozzah R, Alyousif G, Shabi Y, Alhehaily N, Zhong WY, Facciabene A, Kannan S, Kannan RM, Burd I (2017) Maternal dendrimer-based therapy for inflammation-induced preterm birth and perinatal brain injury. Sci Rep 7:6106CrossRef Lei J, Rosenzweig JM, Mishra MK, Alshehri W, Brancusi F, McLane M, Almalki A, Bahabry R, Arif H, Rozzah R, Alyousif G, Shabi Y, Alhehaily N, Zhong WY, Facciabene A, Kannan S, Kannan RM, Burd I (2017) Maternal dendrimer-based therapy for inflammation-induced preterm birth and perinatal brain injury. Sci Rep 7:6106CrossRef
go back to reference Liaw K, Gok O, DeRidder LB, Kannan S, Kannan RM (2018) Quantitative assessment of surface functionality effects on microglial uptake and retention of PAMAM dendrimers. J Nanopart Res 20(4):111CrossRef Liaw K, Gok O, DeRidder LB, Kannan S, Kannan RM (2018) Quantitative assessment of surface functionality effects on microglial uptake and retention of PAMAM dendrimers. J Nanopart Res 20(4):111CrossRef
go back to reference Magruder JT, Crawford TC, Lin YA, Zhang F, Grimm JC, Kannan RM, Kannan S, Sciortino CM (2017) Selective localization of a novel dendrimer nanoparticle in myocardial ischemia-reperfusion injury. Ann Thorac Surg 104(3):891–898CrossRef Magruder JT, Crawford TC, Lin YA, Zhang F, Grimm JC, Kannan RM, Kannan S, Sciortino CM (2017) Selective localization of a novel dendrimer nanoparticle in myocardial ischemia-reperfusion injury. Ann Thorac Surg 104(3):891–898CrossRef
go back to reference Majoros IJ, Keszler B, Woehler S, Bull T, Baker JR (2003) Acetylation of poly(amidoamine) dendrimers. Macromolecules 36(15):5526–5529CrossRef Majoros IJ, Keszler B, Woehler S, Bull T, Baker JR (2003) Acetylation of poly(amidoamine) dendrimers. Macromolecules 36(15):5526–5529CrossRef
go back to reference Majoros I, Myc A, Thomas T, Mehta CB, Baker JR (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, conjugation, and functionality. Biomacromolecules 7:572–579CrossRef Majoros I, Myc A, Thomas T, Mehta CB, Baker JR (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, conjugation, and functionality. Biomacromolecules 7:572–579CrossRef
go back to reference Mastorakos P, Kambhampati SP, Mishra MK, Wu T, Song E, Hanes J, Kannan RM (2015) Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells. Nanoscale 7(9):3845–3856CrossRef Mastorakos P, Kambhampati SP, Mishra MK, Wu T, Song E, Hanes J, Kannan RM (2015) Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells. Nanoscale 7(9):3845–3856CrossRef
go back to reference Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15(5–6):171–185CrossRef Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15(5–6):171–185CrossRef
go back to reference Merzel RL, Frey C, Chen J, Garn R, van Dongen MA, Dougherty CA, Kanduluru AK, Low PS, Marsh ENG, Banaszak Holl MM (2017) Conjugation dependent interaction of folic acid with folate binding protein. Bioconjug Chem 28:2350–2360CrossRef Merzel RL, Frey C, Chen J, Garn R, van Dongen MA, Dougherty CA, Kanduluru AK, Low PS, Marsh ENG, Banaszak Holl MM (2017) Conjugation dependent interaction of folic acid with folate binding protein. Bioconjug Chem 28:2350–2360CrossRef
go back to reference Merzel RL, Orr BG, Banaszak Holl MM (2018) Distributions: the importance of the chemist's view for biological materials. Biomacromolecules 19:1469–1484CrossRef Merzel RL, Orr BG, Banaszak Holl MM (2018) Distributions: the importance of the chemist's view for biological materials. Biomacromolecules 19:1469–1484CrossRef
go back to reference Mishra MK, Beaty CA, Lesniak WG, Kambhampati SR, Zhang F, Wilson MA, Blue ME, Troncoso JC, Kannan S, Johnston MV, Baumgartner WA, Kannan RM (2014) Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano 8(3):2134–2147CrossRef Mishra MK, Beaty CA, Lesniak WG, Kambhampati SR, Zhang F, Wilson MA, Blue ME, Troncoso JC, Kannan S, Johnston MV, Baumgartner WA, Kannan RM (2014) Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest. ACS Nano 8(3):2134–2147CrossRef
go back to reference Mullen DG, Banaszak Holl MM (2011) Heterogeneous ligand-nanoparticle distributions: a major obstacle to scientific understanding and commercial translation. Acc Chem Res 44:1135–1145CrossRef Mullen DG, Banaszak Holl MM (2011) Heterogeneous ligand-nanoparticle distributions: a major obstacle to scientific understanding and commercial translation. Acc Chem Res 44:1135–1145CrossRef
go back to reference Mullen DG, Fang M, Desai A, Baker JR, Orr BG, Banaszak Holl MM (2010) A quantitative assessment of nanoparticle ligand distributions: implications for targeted drug and imaging delivery in dendrimer conjugates. ACS Nano 4:657–670CrossRef Mullen DG, Fang M, Desai A, Baker JR, Orr BG, Banaszak Holl MM (2010) A quantitative assessment of nanoparticle ligand distributions: implications for targeted drug and imaging delivery in dendrimer conjugates. ACS Nano 4:657–670CrossRef
go back to reference Patri AK, Majoros IJ, Baker JR (2002) Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol 6(4):466–471CrossRef Patri AK, Majoros IJ, Baker JR (2002) Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol 6(4):466–471CrossRef
go back to reference Patri AK, Kukowska-Latallo JF, Baker JR (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57(15):2203–2214CrossRef Patri AK, Kukowska-Latallo JF, Baker JR (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57(15):2203–2214CrossRef
go back to reference Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mule J, Baker JR (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19(9):1310–1316CrossRef Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mule J, Baker JR (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19(9):1310–1316CrossRef
go back to reference Sakthivel T, Toth I, Florence AT (1998) Synthesis and physicochemical properties of lipophilic polyamide dendrimers. Pharm Res 15(5):776–782CrossRef Sakthivel T, Toth I, Florence AT (1998) Synthesis and physicochemical properties of lipophilic polyamide dendrimers. Pharm Res 15(5):776–782CrossRef
go back to reference Santos JL, Oliveira H, Pandita D, Rodrigues J, Pego AP, Granja PL, Tomas H (2010) Functionalization of poly(amidoamine) dendrimers with hydrophobic chains for improved gene delivery in mesenchymal stem cells. J Control Release 144(1):55–64CrossRef Santos JL, Oliveira H, Pandita D, Rodrigues J, Pego AP, Granja PL, Tomas H (2010) Functionalization of poly(amidoamine) dendrimers with hydrophobic chains for improved gene delivery in mesenchymal stem cells. J Control Release 144(1):55–64CrossRef
go back to reference Shah DS, Sakthivel T, Toth I, Florence AT, Wilderspin AF (2000) DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers. Int J Pharm 208(1–2):41–48CrossRef Shah DS, Sakthivel T, Toth I, Florence AT, Wilderspin AF (2000) DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers. Int J Pharm 208(1–2):41–48CrossRef
go back to reference Shi XG, Wang SH, Meshinchi S, Van Antwerp ME, Bi XD, Lee IH, Baker JR (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3(7):1245–1252CrossRef Shi XG, Wang SH, Meshinchi S, Van Antwerp ME, Bi XD, Lee IH, Baker JR (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3(7):1245–1252CrossRef
go back to reference Singh P, Gupta U, Asthana A, Jain NK (2008) Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug Chem 19(11):2239–2252CrossRef Singh P, Gupta U, Asthana A, Jain NK (2008) Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug Chem 19(11):2239–2252CrossRef
go back to reference Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers - molecular-level control of size, shape, surface-chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 29(2):138–175CrossRef Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers - molecular-level control of size, shape, surface-chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 29(2):138–175CrossRef
go back to reference Vaidyanathan S, Kaushik M, Dougherty C, Rattan R, Goonewardena SN, Banaszak Holl MM, Monano J, DiMaggieo S (2016) Increase in dye:dendrimer ratio decreases cellular uptake of neutral dendrimers in RAW cells. ACS Biomater Sci Eng 2(9):1540–1545CrossRef Vaidyanathan S, Kaushik M, Dougherty C, Rattan R, Goonewardena SN, Banaszak Holl MM, Monano J, DiMaggieo S (2016) Increase in dye:dendrimer ratio decreases cellular uptake of neutral dendrimers in RAW cells. ACS Biomater Sci Eng 2(9):1540–1545CrossRef
go back to reference van Dongen M, Dougherty CA, Banaszak Holl MM (2014) Multivalent polymers for drug delivery and imaging: the challenges of conjugation. Biomacromolecules 15:3215–3234CrossRef van Dongen M, Dougherty CA, Banaszak Holl MM (2014) Multivalent polymers for drug delivery and imaging: the challenges of conjugation. Biomacromolecules 15:3215–3234CrossRef
go back to reference Wu LP, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM (2015) Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug Chem 26(7):1198–1211CrossRef Wu LP, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM (2015) Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug Chem 26(7):1198–1211CrossRef
go back to reference Xiao TY, Cao XY, Hou WX, Peng C, Qiu JR, Shi XY (2015) Poly(amidoamine) dendrimers modified with 1,2-Epoxyhexane or 1,2-Epoxydodecane for enhanced gene delivery applications. J Nanosci Nanotechnol 15(12):10134–10140CrossRef Xiao TY, Cao XY, Hou WX, Peng C, Qiu JR, Shi XY (2015) Poly(amidoamine) dendrimers modified with 1,2-Epoxyhexane or 1,2-Epoxydodecane for enhanced gene delivery applications. J Nanosci Nanotechnol 15(12):10134–10140CrossRef
go back to reference Yoo H, Juliano RL (2000) Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res 28(21):4225–4231CrossRef Yoo H, Juliano RL (2000) Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res 28(21):4225–4231CrossRef
go back to reference Yuba E, Nakajima Y, Tsukamoto K, Iwashita S, Kojima C, Harada A, Kono K (2012) Effect of unsaturated alkyl chains on transfection activity of poly(amidoamine) dendron-bearing lipids. J Control Release 160(3):552–560CrossRef Yuba E, Nakajima Y, Tsukamoto K, Iwashita S, Kojima C, Harada A, Kono K (2012) Effect of unsaturated alkyl chains on transfection activity of poly(amidoamine) dendron-bearing lipids. J Control Release 160(3):552–560CrossRef
go back to reference Zhang F, Nance E, Zhang Z, Jasty V, Kambhampati SP, Mishra MK, Burd I, Romero R, Kannan S, Kannan RM (2016) Surface functionality affects the biodistribution and microglia-targeting of intra-amniotically delivered dendrimers. J Control Release 237:61–70CrossRef Zhang F, Nance E, Zhang Z, Jasty V, Kambhampati SP, Mishra MK, Burd I, Romero R, Kannan S, Kannan RM (2016) Surface functionality affects the biodistribution and microglia-targeting of intra-amniotically delivered dendrimers. J Control Release 237:61–70CrossRef
go back to reference Zhang F, Magruder JT, Lin YA, Crawford TC, Grimm JC, Sciortino CM, Wilson MA, Blue ME, Kannan S, Johnston MV, Baumgartner WA, Kannan RM (2017) Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model. J Control Release 249:173–182CrossRef Zhang F, Magruder JT, Lin YA, Crawford TC, Grimm JC, Sciortino CM, Wilson MA, Blue ME, Kannan S, Johnston MV, Baumgartner WA, Kannan RM (2017) Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model. J Control Release 249:173–182CrossRef
go back to reference Zheng Y, Fu F, Zhang M, Shen M, Zhu M, Shi X (2014) Multifunctional dendrimers modified with alpha-tocopheryl succinate for targeted cancer therapy. Med Chem Commun 5:879–885CrossRef Zheng Y, Fu F, Zhang M, Shen M, Zhu M, Shi X (2014) Multifunctional dendrimers modified with alpha-tocopheryl succinate for targeted cancer therapy. Med Chem Commun 5:879–885CrossRef
go back to reference Zhu J, Zhao L, Cheng Y, Xiong Z, Tang Y, Shen M, Zhao J, Shi X (2015) Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 7:18169–18178CrossRef Zhu J, Zhao L, Cheng Y, Xiong Z, Tang Y, Shen M, Zhao J, Shi X (2015) Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 7:18169–18178CrossRef
Metadata
Title
Tailoring dendrimer conjugates for biomedical applications: the impact of altering hydrophobicity
Authors
Mark M. Banaszak Holl
Casey A. Dougherty
Sriram Vaidyanathan
Publication date
01-10-2018
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 10/2018
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-018-4380-6

Other articles of this Issue 10/2018

Journal of Nanoparticle Research 10/2018 Go to the issue

Premium Partners