Skip to main content
Top
Published in: Colloid and Polymer Science 10/2015

01-10-2015 | Original Contribution

Tunable immobilization of protein in anionic spherical polyelectrolyte brushes as observed by small-angle X-ray scattering

Authors: Weihua Wang, Li Li, Haoya Han, Yuchuan Tian, Zhiming Zhou, Xuhong Guo

Published in: Colloid and Polymer Science | Issue 10/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tunable immobilization of bovine serum albumins (BSA) onto anionic spherical polyelectrolyte brushes (SPB) by changing BSA concentration, pH, and ionic strength was mainly observed by small-angle X-ray scattering (SAXS). Change of the BSA amount immobilized in SPB can be determined by SAXS which was confirmed by UV spectroscopy, and SAXS is the unique method to “see” the distribution of BSA in SPB. More BSA entered into brush layer upon increasing the protein concentration or decreasing the ionic strength of solutions. When pH increased from 3 to 5 (around the isoelectric point of BSA 4.9), more BSA came into the brush inner layer, while the proteins partly moved to the outer layer when pH continued to increase. After pH was higher than 7, most of BSA were desorbed from SPB. SAXS is proved to be a powerful tool to monitor the tunable immobilization and distribution of proteins in SPB.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bao J, Chen W, Liu TT, Zhu YL, Jin PY, Wang LY, Liu JF, Wei YG, Li YD (2007) Bifunctional Au-Fe3O4 nanopartides for protein separation. ACS Nano 1:293–298CrossRef Bao J, Chen W, Liu TT, Zhu YL, Jin PY, Wang LY, Liu JF, Wei YG, Li YD (2007) Bifunctional Au-Fe3O4 nanopartides for protein separation. ACS Nano 1:293–298CrossRef
2.
go back to reference Hasanzadeh M, Shadjou N, Omidinia E (2013) Mesoporous silica (MCM-41)-Fe2O3 as a novel magnetic nanosensor for determination of trace amounts of amino acids. Colloids Surf B: Biointerfaces 108:52–59CrossRef Hasanzadeh M, Shadjou N, Omidinia E (2013) Mesoporous silica (MCM-41)-Fe2O3 as a novel magnetic nanosensor for determination of trace amounts of amino acids. Colloids Surf B: Biointerfaces 108:52–59CrossRef
3.
go back to reference Belegrinou S, Menon S, Dobrunz D, Meier W (2011) Solid-supported polymeric membranes. Soft Matter 7:2202–2210CrossRef Belegrinou S, Menon S, Dobrunz D, Meier W (2011) Solid-supported polymeric membranes. Soft Matter 7:2202–2210CrossRef
4.
go back to reference Bomboi F, Tardani F, Gazzoli D, Bonincontro A, La Mesa C (2013) Lysozyme binds onto functionalized carbon nanotubes. Colloids Surf B: Biointerfaces 108:16–22CrossRef Bomboi F, Tardani F, Gazzoli D, Bonincontro A, La Mesa C (2013) Lysozyme binds onto functionalized carbon nanotubes. Colloids Surf B: Biointerfaces 108:16–22CrossRef
5.
go back to reference Liu GY, Chen CJ, Ji J (2012) Biocompatible and biodegradable polymersomes as delivery vehicles in biomedical applications. Soft Matter 8:8811–8821CrossRef Liu GY, Chen CJ, Ji J (2012) Biocompatible and biodegradable polymersomes as delivery vehicles in biomedical applications. Soft Matter 8:8811–8821CrossRef
6.
go back to reference Senaratne W, Andruzzi L, Ober CK (2005) Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. Biomacromolecules 6:2427–2448CrossRef Senaratne W, Andruzzi L, Ober CK (2005) Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. Biomacromolecules 6:2427–2448CrossRef
7.
go back to reference Rastogi L, Arunachalam J (2013) Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications. Colloids Surf B: Biointerfaces 108:134–141CrossRef Rastogi L, Arunachalam J (2013) Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications. Colloids Surf B: Biointerfaces 108:134–141CrossRef
8.
go back to reference Gu HW, Xu KM, Xu CJ, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 9:941–949CrossRef Gu HW, Xu KM, Xu CJ, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 9:941–949CrossRef
9.
go back to reference Boyer C, Huang X, Whittaker MR, Bulmus V, Davis TP (2011) An overview of protein-polymer particles. Soft Matter 7:1599–1614CrossRef Boyer C, Huang X, Whittaker MR, Bulmus V, Davis TP (2011) An overview of protein-polymer particles. Soft Matter 7:1599–1614CrossRef
10.
go back to reference Kayitmazer AB, Quinn B, Kimura K, Ryan GL, Tate AJ, Pink DA, Dubin PL (2010) Protein specificity of charged sequences in polyanions and heparins. Biomacromolecules 11:3325–3331CrossRef Kayitmazer AB, Quinn B, Kimura K, Ryan GL, Tate AJ, Pink DA, Dubin PL (2010) Protein specificity of charged sequences in polyanions and heparins. Biomacromolecules 11:3325–3331CrossRef
11.
go back to reference Kayitmazer AB, Strand SP, Tribet C, Jaeger W, Dubin PL (2007) Effect of polyelectrolyte structure on protein-polyelectrolyte coacervates: coacervates of bovine serum albumin with poly(diallyidimethylammonium chloride) versus chitosan. Biomacromolecules 8:3568–3577CrossRef Kayitmazer AB, Strand SP, Tribet C, Jaeger W, Dubin PL (2007) Effect of polyelectrolyte structure on protein-polyelectrolyte coacervates: coacervates of bovine serum albumin with poly(diallyidimethylammonium chloride) versus chitosan. Biomacromolecules 8:3568–3577CrossRef
12.
go back to reference Xu YS, Mazzawi M, Chen KM, Sun LH, Dubin PL (2011) Protein purification by polyelectrolyte coacervation: influence of protein charge anisotropy on selectivity. Biomacromolecules 12:1512–1522CrossRef Xu YS, Mazzawi M, Chen KM, Sun LH, Dubin PL (2011) Protein purification by polyelectrolyte coacervation: influence of protein charge anisotropy on selectivity. Biomacromolecules 12:1512–1522CrossRef
13.
go back to reference Chen KM, Xu YS, Rana S, Miranda OR, Dubin PL, Rotello VM, Sun LH, Guo XH (2011) Electrostatic selectivity in protein-nanoparticle interactions. Biomacromolecules 12:2552–2561CrossRef Chen KM, Xu YS, Rana S, Miranda OR, Dubin PL, Rotello VM, Sun LH, Guo XH (2011) Electrostatic selectivity in protein-nanoparticle interactions. Biomacromolecules 12:2552–2561CrossRef
14.
go back to reference Hollmann O, Steitz R, Czeslik C (2008) Structure and dynamics of alpha-lactalbumin adsorbed at a charged brush interface. Phys Chem Chem Phys 10:1448–1456CrossRef Hollmann O, Steitz R, Czeslik C (2008) Structure and dynamics of alpha-lactalbumin adsorbed at a charged brush interface. Phys Chem Chem Phys 10:1448–1456CrossRef
15.
go back to reference Reichhart C, Czeslik C (2009) Native-like structure of proteins at a planar poly(acrylic acid) brush. Langmuir 25:1047–1053CrossRef Reichhart C, Czeslik C (2009) Native-like structure of proteins at a planar poly(acrylic acid) brush. Langmuir 25:1047–1053CrossRef
16.
go back to reference Guo X, Weiss A, Ballauff M (1999) Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization. Macromolecules 32:6043–6046CrossRef Guo X, Weiss A, Ballauff M (1999) Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization. Macromolecules 32:6043–6046CrossRef
17.
go back to reference Bolisetty S, Schneider C, Polzer F, Ballauff M, Li W, Zhang A, Schluter AD (2009) Formation of stable mesoglobules by a thermosensitive dendronized polymer. Macromolecules 42:7122–7128CrossRef Bolisetty S, Schneider C, Polzer F, Ballauff M, Li W, Zhang A, Schluter AD (2009) Formation of stable mesoglobules by a thermosensitive dendronized polymer. Macromolecules 42:7122–7128CrossRef
18.
go back to reference Guo X, Ballauff M (2000) Spatial dimensions of colloidal polyelectrolyte brushes as determined by dynamic light scattering. Langmuir 16:8719–8726CrossRef Guo X, Ballauff M (2000) Spatial dimensions of colloidal polyelectrolyte brushes as determined by dynamic light scattering. Langmuir 16:8719–8726CrossRef
19.
go back to reference Wu S, Kaiser J, Guo XH, Li L, Lu Y, Ballauff M (2012) Recoverable platinum nanocatalysts immobilized on magnetic spherical polyelectrolyte brushes. Ind Eng Chem Res 51:5608–5614CrossRef Wu S, Kaiser J, Guo XH, Li L, Lu Y, Ballauff M (2012) Recoverable platinum nanocatalysts immobilized on magnetic spherical polyelectrolyte brushes. Ind Eng Chem Res 51:5608–5614CrossRef
20.
go back to reference Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820CrossRef Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820CrossRef
21.
go back to reference Lu Y, Lunkenbein T, Preussner J, Proch S, Breu J, Kempe R, Ballauff M (2010) Composites of metal nanoparticles and TiO2 immobilized in spherical polyelectrolyte brushes. Langmuir 26:4176–4183CrossRef Lu Y, Lunkenbein T, Preussner J, Proch S, Breu J, Kempe R, Ballauff M (2010) Composites of metal nanoparticles and TiO2 immobilized in spherical polyelectrolyte brushes. Langmuir 26:4176–4183CrossRef
22.
go back to reference Wang WH, Li L, Yu XJ, Han HY, Guo XH (2014) Distribution of magnetic nanoparticles in spherical polyelectrolyte brushes as observed by small-angle X-ray scattering. J Polym Sci B Polym Phys 52:1681–1688CrossRef Wang WH, Li L, Yu XJ, Han HY, Guo XH (2014) Distribution of magnetic nanoparticles in spherical polyelectrolyte brushes as observed by small-angle X-ray scattering. J Polym Sci B Polym Phys 52:1681–1688CrossRef
23.
go back to reference Chen KM, Zhu Y, Li L, Lu Y, Guo XH (2010) Recyclable spherical polyelectrolyte brushes containing magnetic nanoparticles in core. Macromol Rapid Commun 31:1440–1443CrossRef Chen KM, Zhu Y, Li L, Lu Y, Guo XH (2010) Recyclable spherical polyelectrolyte brushes containing magnetic nanoparticles in core. Macromol Rapid Commun 31:1440–1443CrossRef
24.
go back to reference Chen KM, Zhu Y, Zhang YF, Li L, Lu Y, Guo XH (2011) Synthesis of magnetic spherical polyelectrolyte brushes. Macromolecules 44:632–639CrossRef Chen KM, Zhu Y, Zhang YF, Li L, Lu Y, Guo XH (2011) Synthesis of magnetic spherical polyelectrolyte brushes. Macromolecules 44:632–639CrossRef
25.
go back to reference Zhu Y, Chen KM, Wang X, Guo XH (2012) Spherical polyelectrolyte brushes as a nanoreactor for synthesis of ultrafine magnetic nanoparticles. Nanotechnology 23 Zhu Y, Chen KM, Wang X, Guo XH (2012) Spherical polyelectrolyte brushes as a nanoreactor for synthesis of ultrafine magnetic nanoparticles. Nanotechnology 23
26.
go back to reference Henzler K, Wittemann A, Breininger E, Ballauff M, Rosenfeldt S (2007) Adsorption of bovine hemoglobin onto spherical polyelectrolyte brushes monitored by small-angle x-ray scattering and Fourier transform infrared spectroscopy. Biomacromolecules 8:3674–3681CrossRef Henzler K, Wittemann A, Breininger E, Ballauff M, Rosenfeldt S (2007) Adsorption of bovine hemoglobin onto spherical polyelectrolyte brushes monitored by small-angle x-ray scattering and Fourier transform infrared spectroscopy. Biomacromolecules 8:3674–3681CrossRef
27.
go back to reference Wang SY, Chen KM, Li L, Guo XH (2013) Binding between proteins and cationic spherical polyelectrolyte brushes: effect of pH, ionic strength, and stoichiometry. Biomacromolecules 14:818–827CrossRef Wang SY, Chen KM, Li L, Guo XH (2013) Binding between proteins and cationic spherical polyelectrolyte brushes: effect of pH, ionic strength, and stoichiometry. Biomacromolecules 14:818–827CrossRef
28.
go back to reference Wang SY, Chen KM, Xu YS, Yu XJ, Wang WH, Li L, Guo XH (2013) Protein immobilization and separation using anionic/cationic spherical polyelectrolyte brushes based on charge anisotropy. Soft Matter 9:11276–11287CrossRef Wang SY, Chen KM, Xu YS, Yu XJ, Wang WH, Li L, Guo XH (2013) Protein immobilization and separation using anionic/cationic spherical polyelectrolyte brushes based on charge anisotropy. Soft Matter 9:11276–11287CrossRef
29.
go back to reference Henzler K, Haupt B, Rosenfeldt S, Harnau L, Narayanan T, Ballauff M (2011) Interaction strength between proteins and polyelectrolyte brushes: a small angle X-ray scattering study. Phys Chem Chem Phys 13:17599–17605CrossRef Henzler K, Haupt B, Rosenfeldt S, Harnau L, Narayanan T, Ballauff M (2011) Interaction strength between proteins and polyelectrolyte brushes: a small angle X-ray scattering study. Phys Chem Chem Phys 13:17599–17605CrossRef
30.
go back to reference Yu XJ, Wang WH, Li L, Guo XH, Zhou ZM, Wang FC (2014) Analysis of spherical polyelectrolyte brushes by small angle X-ray scattering. Chin J Polym Sci 32:778–785CrossRef Yu XJ, Wang WH, Li L, Guo XH, Zhou ZM, Wang FC (2014) Analysis of spherical polyelectrolyte brushes by small angle X-ray scattering. Chin J Polym Sci 32:778–785CrossRef
31.
go back to reference Welsch N, Lu Y, Dzubiella J, Ballauff M (2013) Adsorption of proteins to functional polymeric nanoparticles. Polymer 54:2835–2849CrossRef Welsch N, Lu Y, Dzubiella J, Ballauff M (2013) Adsorption of proteins to functional polymeric nanoparticles. Polymer 54:2835–2849CrossRef
32.
go back to reference Henzler K, Haupt B, Lauterbach K, Wittemann A, Borisov O, Ballauff M (2010) Adsorption of beta-lactoglobulin on spherical polyelectrolyte brushes: direct proof of counterion release by isothermal titration calorimetry. J Am Chem Soc 132:3159–3163CrossRef Henzler K, Haupt B, Lauterbach K, Wittemann A, Borisov O, Ballauff M (2010) Adsorption of beta-lactoglobulin on spherical polyelectrolyte brushes: direct proof of counterion release by isothermal titration calorimetry. J Am Chem Soc 132:3159–3163CrossRef
33.
go back to reference Haupt B, Neumann T, Wittemann A, Ballauff M (2005) Activity of enzymes immobilized in colloidal spherical polyelectrolyte brushes. Biomacromolecules 6:948–955CrossRef Haupt B, Neumann T, Wittemann A, Ballauff M (2005) Activity of enzymes immobilized in colloidal spherical polyelectrolyte brushes. Biomacromolecules 6:948–955CrossRef
34.
go back to reference Lu Y, Ballauff M (2011) Thermosensitive core-shell microgels: from colloidal model systems to nanoreactors. Prog Polym Sci 36:767–792CrossRef Lu Y, Ballauff M (2011) Thermosensitive core-shell microgels: from colloidal model systems to nanoreactors. Prog Polym Sci 36:767–792CrossRef
35.
go back to reference Welsch N, Wittemann A, Ballauff M (2009) Enhanced activity of enzymes immobilized in thermoresponsive core-shell microgels. J Phys Chem B 113:16039–16045CrossRef Welsch N, Wittemann A, Ballauff M (2009) Enhanced activity of enzymes immobilized in thermoresponsive core-shell microgels. J Phys Chem B 113:16039–16045CrossRef
36.
go back to reference Welsch N, Becker AL, Dzubiella J, Ballauff M (2012) Core-shell microgels as “smart” carriers for enzymes. Soft Matter 8:1428–1436CrossRef Welsch N, Becker AL, Dzubiella J, Ballauff M (2012) Core-shell microgels as “smart” carriers for enzymes. Soft Matter 8:1428–1436CrossRef
37.
go back to reference Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo XH, Ballauff M, Lu Y (2012) Thermosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis. Angew Chem Int Ed 51:2229–2233CrossRef Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo XH, Ballauff M, Lu Y (2012) Thermosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis. Angew Chem Int Ed 51:2229–2233CrossRef
38.
go back to reference Xu YS, Wang SY, Han HY, Chen KM, Qin L, Xu J, Wang J, Li L, Guo XH (2014) Enhancement of enzymatic acteivity by magnetic spherical polyelectrolyte brushes: a potential recycling strategy for enzymes. Langmuir 30:11156–11164CrossRef Xu YS, Wang SY, Han HY, Chen KM, Qin L, Xu J, Wang J, Li L, Guo XH (2014) Enhancement of enzymatic acteivity by magnetic spherical polyelectrolyte brushes: a potential recycling strategy for enzymes. Langmuir 30:11156–11164CrossRef
39.
go back to reference Jackler G, Wittemann A, Ballauff M, Czeslik C (2004) Spherical polyelectrolyte brushes as carrier particles for proteins: an investigation of the structure of adsorbed and desorbed bovine serum albumin. Spectroscopy 18:289–299CrossRef Jackler G, Wittemann A, Ballauff M, Czeslik C (2004) Spherical polyelectrolyte brushes as carrier particles for proteins: an investigation of the structure of adsorbed and desorbed bovine serum albumin. Spectroscopy 18:289–299CrossRef
40.
go back to reference Wittemann A, Ballauff M (2004) Secondary structure analysis of proteins embedded in spherical polyelectrolyte brushes by FT-IR spectroscopy. Anal Chem 76:2813–2819CrossRef Wittemann A, Ballauff M (2004) Secondary structure analysis of proteins embedded in spherical polyelectrolyte brushes by FT-IR spectroscopy. Anal Chem 76:2813–2819CrossRef
41.
go back to reference Anikin K, Rocker C, Wittemann A, Wiedenmann J, Ballauff M, Nienhaus GU (2005) Polyelectrolyte-mediated protein adsorption: fluorescent protein binding to individual polyelectrolyte nanospheres. J Phys Chem B 109:5418–5420CrossRef Anikin K, Rocker C, Wittemann A, Wiedenmann J, Ballauff M, Nienhaus GU (2005) Polyelectrolyte-mediated protein adsorption: fluorescent protein binding to individual polyelectrolyte nanospheres. J Phys Chem B 109:5418–5420CrossRef
42.
go back to reference Kayitmazer AB, Seeman D, Minsky BB, Dubin PL, Xu YS (2013) Protein-polyelectrolyte interactions. Soft Matter 9:2553–2583CrossRef Kayitmazer AB, Seeman D, Minsky BB, Dubin PL, Xu YS (2013) Protein-polyelectrolyte interactions. Soft Matter 9:2553–2583CrossRef
43.
go back to reference Antonov M, Mazzawi M, Dubin PL (2010) Entering and exiting the protein-polyelectrolyte coacervate phase via nonmonotonic salt dependence of critical conditions. Biomacromolecules 11:51–59CrossRef Antonov M, Mazzawi M, Dubin PL (2010) Entering and exiting the protein-polyelectrolyte coacervate phase via nonmonotonic salt dependence of critical conditions. Biomacromolecules 11:51–59CrossRef
44.
go back to reference Silva RA, Urzua MD, Petri DFS, Dubin PL (2010) Protein adsorption onto polyelectrolyte layers: effects of protein hydrophobicity and charge anisotropy. Langmuir 26:14032–14038CrossRef Silva RA, Urzua MD, Petri DFS, Dubin PL (2010) Protein adsorption onto polyelectrolyte layers: effects of protein hydrophobicity and charge anisotropy. Langmuir 26:14032–14038CrossRef
45.
go back to reference Seyrek E, Dubin PL, Tribet C, Gamble EA (2003) Ionic strength dependence of protein-polyelectrolyte interactions. Biomacromolecules 4:273–282CrossRef Seyrek E, Dubin PL, Tribet C, Gamble EA (2003) Ionic strength dependence of protein-polyelectrolyte interactions. Biomacromolecules 4:273–282CrossRef
46.
go back to reference Bolze J, Ballauff M, Rische T, Rudhardt D, Meixner A (2004) In situ structural characterization of semi-crystalline polymer latex particles by small-angle X-ray scattering. Macromol Chem Phys 205:165–172CrossRef Bolze J, Ballauff M, Rische T, Rudhardt D, Meixner A (2004) In situ structural characterization of semi-crystalline polymer latex particles by small-angle X-ray scattering. Macromol Chem Phys 205:165–172CrossRef
47.
go back to reference Rosenfeldt S, Wittemann A, Ballauff M, Breininger E, Bolze J, Dingenouts N (2004) Interaction of proteins with spherical polyelectrolyte brushes in solution as studied by small-angle x-ray scattering. Phys Rev E 70:0614031–0614010CrossRef Rosenfeldt S, Wittemann A, Ballauff M, Breininger E, Bolze J, Dingenouts N (2004) Interaction of proteins with spherical polyelectrolyte brushes in solution as studied by small-angle x-ray scattering. Phys Rev E 70:0614031–0614010CrossRef
48.
go back to reference Dingenouts N, Bolze J, Potschke D, Ballauff M (1999) Analysis of polymer latexes by small-angle X-ray scattering. Polym Latexes Epoxide Resins Polyampholytes 144:1–47CrossRef Dingenouts N, Bolze J, Potschke D, Ballauff M (1999) Analysis of polymer latexes by small-angle X-ray scattering. Polym Latexes Epoxide Resins Polyampholytes 144:1–47CrossRef
49.
go back to reference de Robillard Q, Guo X, Ballauff M, Narayanan T (2000) Spatial correlation of spherical polyelectrolyte brushes in salt-free solution as observed by small-angle X-ray scattering. Macromolecules 33:9109–9114CrossRef de Robillard Q, Guo X, Ballauff M, Narayanan T (2000) Spatial correlation of spherical polyelectrolyte brushes in salt-free solution as observed by small-angle X-ray scattering. Macromolecules 33:9109–9114CrossRef
50.
go back to reference Bolze J, Ballauff M, Kijlstra J, Rudhardt D (2003) Application of small-angle X-ray scattering as a tool for the structural analysis of industrial polymer dispersions. Macromol Mater Eng 288:495–502CrossRef Bolze J, Ballauff M, Kijlstra J, Rudhardt D (2003) Application of small-angle X-ray scattering as a tool for the structural analysis of industrial polymer dispersions. Macromol Mater Eng 288:495–502CrossRef
51.
go back to reference Wittemann A, Ballauff M (2006) Interaction of proteins with linear polyelectrolytes and spherical polyelectrolyte brushes in aqueous solution. Phys Chem Chem Phys 8:5269–5275CrossRef Wittemann A, Ballauff M (2006) Interaction of proteins with linear polyelectrolytes and spherical polyelectrolyte brushes in aqueous solution. Phys Chem Chem Phys 8:5269–5275CrossRef
52.
go back to reference Dingenouts N, Merkle R, Guo X, Narayanan T, Goerigk G, Ballauff M (2003) Use of anomalous small-angle X-ray scattering for the investigation of highly charged colloids. J Appl Crystallogr 36:578–582CrossRef Dingenouts N, Merkle R, Guo X, Narayanan T, Goerigk G, Ballauff M (2003) Use of anomalous small-angle X-ray scattering for the investigation of highly charged colloids. J Appl Crystallogr 36:578–582CrossRef
53.
go back to reference Henzler K, Rosenfeldt S, Wittemann A, Harnau L, Finet S, Narayanan T, Ballauff M (2008) Directed motion of proteins along tethered polyelectrolytes. Phys Rev Lett 100:1583011–1583014CrossRef Henzler K, Rosenfeldt S, Wittemann A, Harnau L, Finet S, Narayanan T, Ballauff M (2008) Directed motion of proteins along tethered polyelectrolytes. Phys Rev Lett 100:1583011–1583014CrossRef
54.
go back to reference Ballauff M (2003) Nanoscopic polymer particles with a well-defined surface: synthesis, characterization, and properties. Macromol Chem Phys 204:220–234CrossRef Ballauff M (2003) Nanoscopic polymer particles with a well-defined surface: synthesis, characterization, and properties. Macromol Chem Phys 204:220–234CrossRef
Metadata
Title
Tunable immobilization of protein in anionic spherical polyelectrolyte brushes as observed by small-angle X-ray scattering
Authors
Weihua Wang
Li Li
Haoya Han
Yuchuan Tian
Zhiming Zhou
Xuhong Guo
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 10/2015
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-015-3684-7

Other articles of this Issue 10/2015

Colloid and Polymer Science 10/2015 Go to the issue

Premium Partners