Skip to main content
Top
Published in: Microsystem Technologies 4/2016

10-02-2015 | Technical Paper

Tunable MEMS piezoelectric energy harvesting device

Authors: Almudena Rivadeneyra, Juan Manuel Soto-Rueda, Rosemary O’Keeffe, Jesús Banqueri, Nathan Jackson, Alan Mathewson, Juan A. López-Villanueva

Published in: Microsystem Technologies | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work is focused on low frequency (<300 Hz) vibrations due to the fact that many industrial and commercial devices operate at those frequencies. The aim of the present work is to model by numerical simulation a Si cantilever beam with an AlN piezoelectric layer concept that tunes its resonant frequency post-processing, while reducing the separation of the first two modes of resonance in order to broaden its quality factor and, therefore, to harvest more environmental energy. This paper investigates by numerical simulation the influence of perforating sections of the Si beam has on the resonant frequencies of the cantilever. The authors have found that the distance between these modes is decreased by 30 % when 0.002 mm3 is extracted in a specific location of the initial structure. This difference between modes can be reduced above 80 % if a volume of 0.004 mm3 in a specific part of the initial design is subtracted. In these conditions, the first mode is decreased about 20 % the initial value and the second mode about 60 %.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1CrossRef Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1CrossRef
go back to reference Choi D-H, Han C-H, Kim H-D, Yoon J-B (2011) Liquid-based electrostatic energy harvester with high sensitivity to human physical motion. Smart Mater Struct 20:125012CrossRef Choi D-H, Han C-H, Kim H-D, Yoon J-B (2011) Liquid-based electrostatic energy harvester with high sensitivity to human physical motion. Smart Mater Struct 20:125012CrossRef
go back to reference COMSOL Multiphysics (2008) Structural mechanics module. User’s Guide, Version 4.2 COMSOL Multiphysics (2008) Structural mechanics module. User’s Guide, Version 4.2
go back to reference COMSOL Multiphysics (2012) 4.3 User’s guide. COMSOL COMSOL Multiphysics (2012) 4.3 User’s guide. COMSOL
go back to reference Emam M (2008) Finite element analysis of composite piezoelectric beam using comsol. M.S. thesis, Drexel University, Philadelphia Emam M (2008) Finite element analysis of composite piezoelectric beam using comsol. M.S. thesis, Drexel University, Philadelphia
go back to reference Ericka M, Vasic D, Costa F, Poulain G (2005) Predictive energy harvesting from mechanical vibration using a circular piezoelectric membrane. In: IEEE Ultrasonics Symposium, vol 2, pp 946–949 Ericka M, Vasic D, Costa F, Poulain G (2005) Predictive energy harvesting from mechanical vibration using a circular piezoelectric membrane. In: IEEE Ultrasonics Symposium, vol 2, pp 946–949
go back to reference Horowitz S, Nishida T, Cattafesta L, Sheplak M (2007) Development of a micromachined piezoelectric microphone for aeroacoustics applications. J Acoust Soc Am 122:3428–3436CrossRef Horowitz S, Nishida T, Cattafesta L, Sheplak M (2007) Development of a micromachined piezoelectric microphone for aeroacoustics applications. J Acoust Soc Am 122:3428–3436CrossRef
go back to reference Jackson N, O’Keeffe R, O’Leary R, O’Neill M, Waldron F, Mathewson A (2012) A diaphragm based piezoelectric AlN film quality test structure. In: Microelectronic test structures (ICMTS), 2012 IEEE international conference. IEEE, pp 50–54 Jackson N, O’Keeffe R, O’Leary R, O’Neill M, Waldron F, Mathewson A (2012) A diaphragm based piezoelectric AlN film quality test structure. In: Microelectronic test structures (ICMTS), 2012 IEEE international conference. IEEE, pp 50–54
go back to reference Jackson N, O’Keeffe R, Waldron F, O’Neill M, Mathewson A (2013) Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance. J Micromech Microeng 23:075014CrossRef Jackson N, O’Keeffe R, Waldron F, O’Neill M, Mathewson A (2013) Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance. J Micromech Microeng 23:075014CrossRef
go back to reference Jackson N, O’Keeffe R, Waldron F, O’Neill M, Mathewson A (2014) Evaluation of low-acceleration MEMS piezoelectric energy harvesting devices. Microsyst Technol 20:671–680CrossRef Jackson N, O’Keeffe R, Waldron F, O’Neill M, Mathewson A (2014) Evaluation of low-acceleration MEMS piezoelectric energy harvesting devices. Microsyst Technol 20:671–680CrossRef
go back to reference Kong LB, Li T, Hng HH, Boey F, Zhang T, Li S (2014) Waste mechanical energy harvesting (I): piezoelectric effect. In: Waste energy harvesting. Springer, Berlin, Heidelberg, pp 19–133 Kong LB, Li T, Hng HH, Boey F, Zhang T, Li S (2014) Waste mechanical energy harvesting (I): piezoelectric effect. In: Waste energy harvesting. Springer, Berlin, Heidelberg, pp 19–133
go back to reference Mehraeen S, Jagannathan S, Corzine K (2008) Energy harvesting using piezoelectric materials and high voltage scavenging circuitry. In: IEEE international conference on Industrial technology, 2008 (ICIT 2008). IEEE, pp 1–8 Mehraeen S, Jagannathan S, Corzine K (2008) Energy harvesting using piezoelectric materials and high voltage scavenging circuitry. In: IEEE international conference on Industrial technology, 2008 (ICIT 2008). IEEE, pp 1–8
go back to reference Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan AP, Lang JH (2001) Vibration-to-electric energy conversion. Very Larg Scale Integr (VLSI) Syst IEEE Trans 9:64–76CrossRef Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan AP, Lang JH (2001) Vibration-to-electric energy conversion. Very Larg Scale Integr (VLSI) Syst IEEE Trans 9:64–76CrossRef
go back to reference Miller LM, Halvorsen E, Dong T, Wright PK (2011) Modeling and experimental verification of low-frequency MEMS energy harvesting from ambient vibrations. J Micromech Microeng 21:045029CrossRef Miller LM, Halvorsen E, Dong T, Wright PK (2011) Modeling and experimental verification of low-frequency MEMS energy harvesting from ambient vibrations. J Micromech Microeng 21:045029CrossRef
go back to reference O’Keeffe R, Jackson N, Waldron F, O’Niell M, McCarthy K, Mathewson A (2013) Investigation into modelling power output for MEMS energy harvesting devices using COMSOL Multiphysics R. In: 14th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE), 2013. IEEE, pp 1–6 O’Keeffe R, Jackson N, Waldron F, O’Niell M, McCarthy K, Mathewson A (2013) Investigation into modelling power output for MEMS energy harvesting devices using COMSOL Multiphysics R. In: 14th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE), 2013. IEEE, pp 1–6
go back to reference Rivadeneyra A, Lopez-Villanueva JA, O’Keeffe R, Jackson N, O’Neill M, Mathewson A (2012) Frequency response of variants of a cantilever beam. In: International conference on synthesis, modeling, analysis and simulation methods and applications to circuit design (SMACD). IEEE, pp 177–180 Rivadeneyra A, Lopez-Villanueva JA, O’Keeffe R, Jackson N, O’Neill M, Mathewson A (2012) Frequency response of variants of a cantilever beam. In: International conference on synthesis, modeling, analysis and simulation methods and applications to circuit design (SMACD). IEEE, pp 177–180
go back to reference Roundy S et al (2005) Improving power output for vibration-based energy scavengers. Pervasive Comput IEEE 4:28–36CrossRef Roundy S et al (2005) Improving power output for vibration-based energy scavengers. Pervasive Comput IEEE 4:28–36CrossRef
go back to reference Zhu D, Tudor M, Beeby S (2010) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21:022001CrossRef Zhu D, Tudor M, Beeby S (2010) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21:022001CrossRef
Metadata
Title
Tunable MEMS piezoelectric energy harvesting device
Authors
Almudena Rivadeneyra
Juan Manuel Soto-Rueda
Rosemary O’Keeffe
Jesús Banqueri
Nathan Jackson
Alan Mathewson
Juan A. López-Villanueva
Publication date
10-02-2015
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 4/2016
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2455-1

Other articles of this Issue 4/2016

Microsystem Technologies 4/2016 Go to the issue