Skip to main content
Top
Published in: Acta Mechanica Sinica 2/2018

28-06-2017 | Research Paper

Two-dimensional analysis of progressive delamination in thin film electrodes

Authors: Mei Liu, Bo Lu, Dong-Li Shi, Jun-Qian Zhang

Published in: Acta Mechanica Sinica | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

By employing the two-dimensional analysis, i.e., plane strain and plane stress, a semi-analytical method is developed to investigate the interfacial delamination in electrodes. The key parameters are obtained from the governing equations, and their effects on the evolution of the delamination are evaluated. The impact of constraint perpendicular to the plane is also investigated by comparing the plane strain and plane stress. It is found that the delamination in the plane strain condition occurs easier, indicating that the constraint is harmful to maintain the structure stability. According to the obtained governing equations, a formula of the dimensionless critical size for delamination is provided, which is a function of the maximum volumetric strain and the Poisson’s ratio of the active layer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Chen, J.: Recent progress in advanced materials for lithium ion batteries. Materials 6, 156–183 (2013)CrossRef Chen, J.: Recent progress in advanced materials for lithium ion batteries. Materials 6, 156–183 (2013)CrossRef
2.
go back to reference Dahn, J.R., Zheng, T., Liu, Y., et al.: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590 (1995)CrossRef Dahn, J.R., Zheng, T., Liu, Y., et al.: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590 (1995)CrossRef
3.
go back to reference Boukamp, B.A., Lesh, G.C., Huggins, R.A.: All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 128, 725–729 (1981)CrossRef Boukamp, B.A., Lesh, G.C., Huggins, R.A.: All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 128, 725–729 (1981)CrossRef
4.
go back to reference Baggetto, L., Niessen, R.A., Roozeboom, F., et al.: High energy density all-solid-state batteries: a challenging concept towards 3D integration. Adv. Funct. Mater. 18, 1057–1066 (2008)CrossRef Baggetto, L., Niessen, R.A., Roozeboom, F., et al.: High energy density all-solid-state batteries: a challenging concept towards 3D integration. Adv. Funct. Mater. 18, 1057–1066 (2008)CrossRef
5.
go back to reference Chan, C.K., Peng, H., Liu, G., et al.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008)CrossRef Chan, C.K., Peng, H., Liu, G., et al.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008)CrossRef
6.
go back to reference Maranchi, J.P., Hepp, A.F., Evans, A.G., et al.: Interfacial properties of the a-Si/Cu: active-inactive thin-film anode system for lithium-ion batteries. J. Electrochem. Soc. 153, A1246–A1253 (2006)CrossRef Maranchi, J.P., Hepp, A.F., Evans, A.G., et al.: Interfacial properties of the a-Si/Cu: active-inactive thin-film anode system for lithium-ion batteries. J. Electrochem. Soc. 153, A1246–A1253 (2006)CrossRef
7.
go back to reference Kasavajjula, U., Wang, C., Appleby, A.J.: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003–1039 (2007)CrossRef Kasavajjula, U., Wang, C., Appleby, A.J.: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003–1039 (2007)CrossRef
8.
go back to reference Howe, J.Y., Burton, D.J., Qi, Y., et al.: Improving microstructure of silicon/carbon nanofiber composites as a Li battery anode. J. Power Sources 221, 455–461 (2013)CrossRef Howe, J.Y., Burton, D.J., Qi, Y., et al.: Improving microstructure of silicon/carbon nanofiber composites as a Li battery anode. J. Power Sources 221, 455–461 (2013)CrossRef
9.
go back to reference Li, H., Huang, X., Chen, L., et al.: A high capacity nano Si composite anode material for lithium rechargeable batteries. Electrochem. Solid State 2, 547–549 (1999)CrossRef Li, H., Huang, X., Chen, L., et al.: A high capacity nano Si composite anode material for lithium rechargeable batteries. Electrochem. Solid State 2, 547–549 (1999)CrossRef
10.
go back to reference Kim, H., Han, B., Choo, J., et al.: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Ind. Ed. 120, 10305–10308 (2008) Kim, H., Han, B., Choo, J., et al.: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Ind. Ed. 120, 10305–10308 (2008)
11.
go back to reference Souquet, J.L., Duclot, M.: Thin film lithium batteries. Solid State Ion. 148, 375–379 (2002)CrossRef Souquet, J.L., Duclot, M.: Thin film lithium batteries. Solid State Ion. 148, 375–379 (2002)CrossRef
12.
go back to reference Xiao, X., Liu, P., Verbrugge, M.W., et al.: Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. J. Power Sources 196, 1409–1416 (2011)CrossRef Xiao, X., Liu, P., Verbrugge, M.W., et al.: Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. J. Power Sources 196, 1409–1416 (2011)CrossRef
13.
go back to reference Maranchi, J.P., Hepp, A.F., Kumta, P.N.: High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid State 6, A198–A201 (2003)CrossRef Maranchi, J.P., Hepp, A.F., Kumta, P.N.: High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid State 6, A198–A201 (2003)CrossRef
14.
go back to reference Haftbaradaran, H., Xiao, X., Verbrugge, M.W., et al.: Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands. J. Power Sources 206, 357–366 (2012)CrossRef Haftbaradaran, H., Xiao, X., Verbrugge, M.W., et al.: Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands. J. Power Sources 206, 357–366 (2012)CrossRef
15.
go back to reference Pal, S., Damle, S.S., Patel, S.H., et al.: Modeling the delamination of amorphous-silicon thin film anode for lithium-ion battery. J. Power Sources 246, 149–159 (2014)CrossRef Pal, S., Damle, S.S., Patel, S.H., et al.: Modeling the delamination of amorphous-silicon thin film anode for lithium-ion battery. J. Power Sources 246, 149–159 (2014)CrossRef
16.
go back to reference Liu, M.: Finite element analysis of lithiation-induced decohesion of a silicon thin film adhesively bonded to a rigid substrate under potentiostatic operation. Int. J. Solids Struct. 67, 263–271 (2015)CrossRef Liu, M.: Finite element analysis of lithiation-induced decohesion of a silicon thin film adhesively bonded to a rigid substrate under potentiostatic operation. Int. J. Solids Struct. 67, 263–271 (2015)CrossRef
17.
go back to reference Prezas, P.D., Somerville, L., Jennings, P., et al.: Effect of fast charging of lithium-ion cells: Performance and post-test results. SAE Technical Paper, 2016-01-1194 (2016) Prezas, P.D., Somerville, L., Jennings, P., et al.: Effect of fast charging of lithium-ion cells: Performance and post-test results. SAE Technical Paper, 2016-01-1194 (2016)
18.
go back to reference Lu, B., Song, Y., Guo, Z., et al.: Modeling of progressive delamination in a thin film driven by diffusion-induced stresses. Int. J. Solids Struct. 50, 2495–2507 (2013)CrossRef Lu, B., Song, Y., Guo, Z., et al.: Modeling of progressive delamination in a thin film driven by diffusion-induced stresses. Int. J. Solids Struct. 50, 2495–2507 (2013)CrossRef
19.
go back to reference Lu, B., Song, Y.C., Guo, Z.S., et al.: Analysis of delamination in thin film electrodes under galvanostatic and potentiostatic operations with Li-ion diffusion from edge. Acta Mech. Sin. 29, 348–356 (2013)MathSciNetCrossRefMATH Lu, B., Song, Y.C., Guo, Z.S., et al.: Analysis of delamination in thin film electrodes under galvanostatic and potentiostatic operations with Li-ion diffusion from edge. Acta Mech. Sin. 29, 348–356 (2013)MathSciNetCrossRefMATH
20.
go back to reference Cheng, Y.-T., Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453–460 (2009)CrossRef Cheng, Y.-T., Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453–460 (2009)CrossRef
21.
go back to reference Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1979)MATH Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1979)MATH
22.
go back to reference Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33, 2899–2938 (1996)CrossRefMATH Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33, 2899–2938 (1996)CrossRefMATH
23.
go back to reference Woelke, P.B., Shields, M.D., Hutchinson, J.W.: Cohesive zone modeling and calibration for mode I tearing of large ductile plates. Eng. Fract. Mech. 147, 293–305 (2015)CrossRef Woelke, P.B., Shields, M.D., Hutchinson, J.W.: Cohesive zone modeling and calibration for mode I tearing of large ductile plates. Eng. Fract. Mech. 147, 293–305 (2015)CrossRef
24.
go back to reference Tvergaard, V., Hutchinson, J.W.: The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J. Mech. Phys. Solids 40, 1377–1397 (1992)CrossRefMATH Tvergaard, V., Hutchinson, J.W.: The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J. Mech. Phys. Solids 40, 1377–1397 (1992)CrossRefMATH
25.
go back to reference Li, J., Dozier, A.K., Li, Y., et al.: Crack pattern formation in thin film lithium-ion battery electrodes. J. Electrochem. Soc. 158, A689–A694 (2011)CrossRef Li, J., Dozier, A.K., Li, Y., et al.: Crack pattern formation in thin film lithium-ion battery electrodes. J. Electrochem. Soc. 158, A689–A694 (2011)CrossRef
26.
go back to reference Lei, G.H., Sun, H.S., Ng, C.W.W.: Relative displacements in semi-infinite plane. Rock Soil Mech. 35, 1224 (2014) Lei, G.H., Sun, H.S., Ng, C.W.W.: Relative displacements in semi-infinite plane. Rock Soil Mech. 35, 1224 (2014)
27.
go back to reference Lu, B., Song, Y., Zhang, J.: Time to delamination onset and critical size of patterned thin film electrodes of lithium ion batteries. J. Power Sources 289, 168–183 (2015)CrossRef Lu, B., Song, Y., Zhang, J.: Time to delamination onset and critical size of patterned thin film electrodes of lithium ion batteries. J. Power Sources 289, 168–183 (2015)CrossRef
28.
go back to reference Szczech, J.R., Jin, S.: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56–72 (2011)CrossRef Szczech, J.R., Jin, S.: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56–72 (2011)CrossRef
Metadata
Title
Two-dimensional analysis of progressive delamination in thin film electrodes
Authors
Mei Liu
Bo Lu
Dong-Li Shi
Jun-Qian Zhang
Publication date
28-06-2017
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 2/2018
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0692-5

Other articles of this Issue 2/2018

Acta Mechanica Sinica 2/2018 Go to the issue

Premium Partners