Skip to main content
Top
Published in: Journal of Scientific Computing 3/2017

03-09-2016

Two-Level Penalty Newton Iterative Method for the 2D/3D Stationary Incompressible Magnetohydrodynamics Equations

Authors: Haiyan Su, Xinlong Feng, Jianping Zhao

Published in: Journal of Scientific Computing | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work is concerned with the study of two-level penalty finite element method for the 2D/3D stationary incompressible magnetohydrodynamics equations. The new method is an interesting combination of the Newton iteration and two-level penalty finite element algorithm with two different finite element pairs \(P_{1}b\)-\(P_{1}\)-\(P_{1}b\) and \(P_{1}\)-\(P_{0}\)-\(P_{1}\). Moreover, the rigorous analysis of stability and error estimate for the proposed method are given. Numerical results verify the theoretical results and show the applicability and effectiveness of the presented scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gunzburger, M., Meir, A., Peterson, J.: On the existence, uniquess and finite element approximation of solutions of the equations of sationary, incompressible magnetohydrodynamic. Math. Comput. 56, 523–563 (1991)CrossRefMATH Gunzburger, M., Meir, A., Peterson, J.: On the existence, uniquess and finite element approximation of solutions of the equations of sationary, incompressible magnetohydrodynamic. Math. Comput. 56, 523–563 (1991)CrossRefMATH
2.
go back to reference Moreau, R.: Magneto-hydrodynamics. Kluwer Academic Publishers, Dordrecht (1990) Moreau, R.: Magneto-hydrodynamics. Kluwer Academic Publishers, Dordrecht (1990)
4.
go back to reference He, C., Wang, Y.: On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 238, 1–17 (2007)MathSciNetCrossRefMATH He, C., Wang, Y.: On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 238, 1–17 (2007)MathSciNetCrossRefMATH
5.
go back to reference Schonbek, M., Schonbek, T., Solli, E.: Large-time behaviour of solutions to the magnetohydrodynamics equations. Math. Ann. 304, 717–756 (1996)MathSciNetCrossRefMATH Schonbek, M., Schonbek, T., Solli, E.: Large-time behaviour of solutions to the magnetohydrodynamics equations. Math. Ann. 304, 717–756 (1996)MathSciNetCrossRefMATH
6.
7.
go back to reference Salah, N., Soulaimani, A., Habashi, W.: A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 190, 5867–5892 (2001)MathSciNetCrossRefMATH Salah, N., Soulaimani, A., Habashi, W.: A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 190, 5867–5892 (2001)MathSciNetCrossRefMATH
8.
go back to reference Codina, R., Silva, N.: Stabilized finite element approximation of the stationary magnetohydrodynamics equations. Comput. Mech. 38, 344–355 (2006)MathSciNetCrossRefMATH Codina, R., Silva, N.: Stabilized finite element approximation of the stationary magnetohydrodynamics equations. Comput. Mech. 38, 344–355 (2006)MathSciNetCrossRefMATH
9.
10.
go back to reference Gerbeau, J.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83–111 (2000)MathSciNetCrossRefMATH Gerbeau, J.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83–111 (2000)MathSciNetCrossRefMATH
11.
go back to reference Ravindran, S.: Linear feedback control and approximation for a system governed by unsteady MHD equations. Comput. Methods Appl. Mech. Eng. 198, 524–541 (2008)MathSciNetCrossRefMATH Ravindran, S.: Linear feedback control and approximation for a system governed by unsteady MHD equations. Comput. Methods Appl. Mech. Eng. 198, 524–541 (2008)MathSciNetCrossRefMATH
12.
go back to reference Salah, N., Soulaimani, A., Habashi, W.: A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 190, 5867–5892 (2001)MathSciNetCrossRefMATH Salah, N., Soulaimani, A., Habashi, W.: A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 190, 5867–5892 (2001)MathSciNetCrossRefMATH
13.
go back to reference Meir, A., Schmidt, P.: Analysis and numerical approximation of a stationary MHD flow problem with nonideal boundary. SIAM J. Numer. Anal. 36, 1304–1332 (1999)MathSciNetCrossRefMATH Meir, A., Schmidt, P.: Analysis and numerical approximation of a stationary MHD flow problem with nonideal boundary. SIAM J. Numer. Anal. 36, 1304–1332 (1999)MathSciNetCrossRefMATH
14.
go back to reference He, Y., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 1351–1359 (2009)MathSciNetCrossRefMATH He, Y., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 1351–1359 (2009)MathSciNetCrossRefMATH
15.
go back to reference Xu, H., He, Y.: Some iterative finite element methods for steady Navier–Stokes equations with different viscosities. J. Comput. Phys. 232, 123–152 (2013)MathSciNetCrossRefMATH Xu, H., He, Y.: Some iterative finite element methods for steady Navier–Stokes equations with different viscosities. J. Comput. Phys. 232, 123–152 (2013)MathSciNetCrossRefMATH
16.
go back to reference Dong, X., He, Y., Zhang, Y.: Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 276, 287–311 (2014)MathSciNetCrossRef Dong, X., He, Y., Zhang, Y.: Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 276, 287–311 (2014)MathSciNetCrossRef
17.
go back to reference Dong, X., He, Y.: Two-level Newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics. J. Sci. Comput. 63, 426–451 (2015)MathSciNetCrossRefMATH Dong, X., He, Y.: Two-level Newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics. J. Sci. Comput. 63, 426–451 (2015)MathSciNetCrossRefMATH
18.
go back to reference Su, H., Feng, X., Huang, P.: Iterative methods in penalty finite element discretization for the steady MHD equations. Comput. Methods Appl. Mech. Eng. 304, 521–545 (2016)MathSciNetCrossRef Su, H., Feng, X., Huang, P.: Iterative methods in penalty finite element discretization for the steady MHD equations. Comput. Methods Appl. Mech. Eng. 304, 521–545 (2016)MathSciNetCrossRef
19.
go back to reference Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62, 49–73 (1992)MathSciNetCrossRefMATH Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62, 49–73 (1992)MathSciNetCrossRefMATH
20.
go back to reference Shen, J.: On error estimates of the penalty method for unsteady Navier–Stokes equations. SIAM J. Numer. Anal. 32, 386–403 (1995)MathSciNetCrossRefMATH Shen, J.: On error estimates of the penalty method for unsteady Navier–Stokes equations. SIAM J. Numer. Anal. 32, 386–403 (1995)MathSciNetCrossRefMATH
21.
go back to reference He, Y.: Optimal error estimate of the penalty finite element method for the time-dependent Navier–Stokes equations. Math. Comput. 74, 1201–1216 (2005)MathSciNetCrossRefMATH He, Y.: Optimal error estimate of the penalty finite element method for the time-dependent Navier–Stokes equations. Math. Comput. 74, 1201–1216 (2005)MathSciNetCrossRefMATH
22.
go back to reference He, Y., Li, J., Yang, X.: Two-level penalized finite element methods for the stationary Navier–Stoke equations. Int. J. Inf. Syst. Sci. 2, 131–143 (2006)MathSciNetMATH He, Y., Li, J., Yang, X.: Two-level penalized finite element methods for the stationary Navier–Stoke equations. Int. J. Inf. Syst. Sci. 2, 131–143 (2006)MathSciNetMATH
25.
go back to reference Layton, W., Lenferink, H., Peterson, J.: A two-level Newton finite element algorithm for approximating electrically conducting incompressible fluid flows. Comput. Math. Appl. 28, 21–31 (1994)MathSciNetCrossRefMATH Layton, W., Lenferink, H., Peterson, J.: A two-level Newton finite element algorithm for approximating electrically conducting incompressible fluid flows. Comput. Math. Appl. 28, 21–31 (1994)MathSciNetCrossRefMATH
26.
go back to reference Layton, W., Meir, A., Schmidtz, P.: A two-level discretization method for the stationary MHD equations. Electron. Trans. Numer. Anal. 6, 198–210 (1997)MathSciNetMATH Layton, W., Meir, A., Schmidtz, P.: A two-level discretization method for the stationary MHD equations. Electron. Trans. Numer. Anal. 6, 198–210 (1997)MathSciNetMATH
27.
go back to reference Zhang, G., Zhang, Y., He, Y.: Two-level coupled and decoupled parallel correction methods for stationary incompressible magnetohydrodynamics. J. Sci. Comput. 65, 920–939 (2015)MathSciNetCrossRefMATH Zhang, G., Zhang, Y., He, Y.: Two-level coupled and decoupled parallel correction methods for stationary incompressible magnetohydrodynamics. J. Sci. Comput. 65, 920–939 (2015)MathSciNetCrossRefMATH
28.
go back to reference He, Y.: Two-level method based on fnite element and Crank–Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 41, 1263–1285 (2003)MathSciNetCrossRefMATH He, Y.: Two-level method based on fnite element and Crank–Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 41, 1263–1285 (2003)MathSciNetCrossRefMATH
29.
go back to reference Gerbeau, J., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2006)CrossRefMATH Gerbeau, J., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2006)CrossRefMATH
30.
go back to reference He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations. IMA J. Numer. Anal. 35, 767–801 (2014)CrossRefMATH He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations. IMA J. Numer. Anal. 35, 767–801 (2014)CrossRefMATH
Metadata
Title
Two-Level Penalty Newton Iterative Method for the 2D/3D Stationary Incompressible Magnetohydrodynamics Equations
Authors
Haiyan Su
Xinlong Feng
Jianping Zhao
Publication date
03-09-2016
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2017
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0276-8

Other articles of this Issue 3/2017

Journal of Scientific Computing 3/2017 Go to the issue

Premium Partner