Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 2/2021

25-08-2020 | Original Article

Two-scale thermomechanical damage model for dynamic shear failure in brittle solids

Authors: Kokouvi Gbetchi, Cristian Dascalu

Published in: Continuum Mechanics and Thermodynamics | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A coupled thermomechanical damage approach for dynamic shear failure in brittle solids is proposed in the present contribution. The model is constructed by asymptotic homogenization from microstructures with dynamically evolving microcracks, in mode II, with unilateral contact and friction conditions on their lips. Crack-tip and frictional heating effects assumed at the small scale give rise to distributed heat sources in the macroscopic temperature equation and specific dissipation terms in the upscaled damage law. The analysis of the effective thermomechanical response of the model reveals strain rate and size effects and the influence of friction and growth of microcracks on the macroscopic thermal evolutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference ABAQUS 6.13, Analysis User’s Manual. Dassault Systems Simulia Corporation, RI, USA (2013) ABAQUS 6.13, Analysis User’s Manual. Dassault Systems Simulia Corporation, RI, USA (2013)
2.
go back to reference Andrieux, S., Bamberger, Y., Marigo, J.-J.: Un modele de materiau microfissure pour les betons et les roches. J. Méc. Theor. Appl. 5, 471–513 (1986)MATH Andrieux, S., Bamberger, Y., Marigo, J.-J.: Un modele de materiau microfissure pour les betons et les roches. J. Méc. Theor. Appl. 5, 471–513 (1986)MATH
3.
go back to reference Archer, J.S., Lesser, A.J.: Shear band formation and mode II fracture of polymeric glasses. J. Polym. Sci. B: Polym. Phys. 49, 103–114 (2010)ADSCrossRef Archer, J.S., Lesser, A.J.: Shear band formation and mode II fracture of polymeric glasses. J. Polym. Sci. B: Polym. Phys. 49, 103–114 (2010)ADSCrossRef
4.
go back to reference Ashby, M.F., Hallam, S.D.: The failure of brittle solids containing small cracks under compressive stress states. Acta Metall. 34, 497–510 (1986)CrossRef Ashby, M.F., Hallam, S.D.: The failure of brittle solids containing small cracks under compressive stress states. Acta Metall. 34, 497–510 (1986)CrossRef
5.
go back to reference Atiezo, M.K., Gbetchi, K., Dascalu, C.: Dynamic shear damage with frictional sliding on microcracks. Eng. Fract. Mech. 236 (2020) Atiezo, M.K., Gbetchi, K., Dascalu, C.: Dynamic shear damage with frictional sliding on microcracks. Eng. Fract. Mech. 236 (2020)
6.
go back to reference Auriault, J.-L.: Wave propagation and transient heat transfer in thermoelastic composites. Int. J. Heat Mass Transf. 55, 5972–5978 (2012)CrossRef Auriault, J.-L.: Wave propagation and transient heat transfer in thermoelastic composites. Int. J. Heat Mass Transf. 55, 5972–5978 (2012)CrossRef
7.
go back to reference Bui, H.D., Ehrlacher, A., Nguyen, Q.S.: Propagation de fissure en thermoélasticité dynamique. J. de Mécanique 19, 697–723 (1980)MathSciNetMATH Bui, H.D., Ehrlacher, A., Nguyen, Q.S.: Propagation de fissure en thermoélasticité dynamique. J. de Mécanique 19, 697–723 (1980)MathSciNetMATH
8.
go back to reference Bhatt, H., Rosakis, A., Sammis, G.: A micro-mechanics based constitutive model for brittle failure at high strain rates. J. Appl. Mech. 79(3), 1016–28 (2011) Bhatt, H., Rosakis, A., Sammis, G.: A micro-mechanics based constitutive model for brittle failure at high strain rates. J. Appl. Mech. 79(3), 1016–28 (2011)
9.
go back to reference Bjerke, T.W.: Thermomechanical Behavior of Amorphous Polymers During High-Speed Crack Propagation, Ph.D. Dissertation, University of Delaware, Newark, DE (2002) Bjerke, T.W.: Thermomechanical Behavior of Amorphous Polymers During High-Speed Crack Propagation, Ph.D. Dissertation, University of Delaware, Newark, DE (2002)
10.
go back to reference Bjerke, T.W., Lambros, J.: Theoretical development and experimental validation of a thermally dissipative cohesive zone model for dynamic fracture of amorphous polymers. J. Mech. Phys. Solids 51, 1947–1970 (2003)CrossRef Bjerke, T.W., Lambros, J.: Theoretical development and experimental validation of a thermally dissipative cohesive zone model for dynamic fracture of amorphous polymers. J. Mech. Phys. Solids 51, 1947–1970 (2003)CrossRef
11.
go back to reference Bougaut, O., Rittel, D.: On crack-tip cooling during dynamic crack initiation. Int. J. Solids Struct. 38, 2517–2532 (2001)MATHCrossRef Bougaut, O., Rittel, D.: On crack-tip cooling during dynamic crack initiation. Int. J. Solids Struct. 38, 2517–2532 (2001)MATHCrossRef
12.
go back to reference Bjerke, T.W., Lambros, J.: Heating during shearing and opening dominated dynamic fracture of polymers. Exp. Mech. 42(1), 107–114 (2002)CrossRef Bjerke, T.W., Lambros, J.: Heating during shearing and opening dominated dynamic fracture of polymers. Exp. Mech. 42(1), 107–114 (2002)CrossRef
13.
go back to reference Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33, 2899–2938 (1996)MATHCrossRef Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33, 2899–2938 (1996)MATHCrossRef
14.
go back to reference Dascalu, C.: Multiscale modeling of rapid failure in brittle solids: branching instabilities. Mech. Mater. 116, 77–89 (2018)CrossRef Dascalu, C.: Multiscale modeling of rapid failure in brittle solids: branching instabilities. Mech. Mater. 116, 77–89 (2018)CrossRef
15.
go back to reference Dascalu, C., Bilbie, G., Agiasofitou, E.: Damage and size effect in elastic solids: a homogenization approach. Int. J. Solids Struct. 45, 409–430 (2008)MATHCrossRef Dascalu, C., Bilbie, G., Agiasofitou, E.: Damage and size effect in elastic solids: a homogenization approach. Int. J. Solids Struct. 45, 409–430 (2008)MATHCrossRef
16.
go back to reference Dascalu, C., Gbetchi, K.: Dynamic evolution of damage by microcracking with heat dissipation. Int. J. Solids Struct. 174–175, 128–144 (2019)CrossRef Dascalu, C., Gbetchi, K.: Dynamic evolution of damage by microcracking with heat dissipation. Int. J. Solids Struct. 174–175, 128–144 (2019)CrossRef
17.
go back to reference Dienes, J.K., Zuo, Q.H., Kershner, J.D.: Impact initiation of explosives and propellants via statistical crack mechanics. J. Mech. Phys. Solids 54(6), 1237–1275 (2006)ADSMATHCrossRef Dienes, J.K., Zuo, Q.H., Kershner, J.D.: Impact initiation of explosives and propellants via statistical crack mechanics. J. Mech. Phys. Solids 54(6), 1237–1275 (2006)ADSMATHCrossRef
18.
go back to reference Duarte, C.A., Grilli, N., Koslowski, M.: Effect of initial damage variability on hot-spot nucleation in energetic materials. J. Appl. Phys. 124(2), 025104 (2018)ADSCrossRef Duarte, C.A., Grilli, N., Koslowski, M.: Effect of initial damage variability on hot-spot nucleation in energetic materials. J. Appl. Phys. 124(2), 025104 (2018)ADSCrossRef
19.
go back to reference Ene, H.I.: On linear thermoelasticity of composite materials. Int. J. Eng. Sci. 21, 443–448 (1983)MATHCrossRef Ene, H.I.: On linear thermoelasticity of composite materials. Int. J. Eng. Sci. 21, 443–448 (1983)MATHCrossRef
20.
go back to reference Fialko, Y.: Temperature fields generated by the elastodynamic propagation of shear cracks in the Earth. J. Geophys. Res. 109, B01303 (2004)ADS Fialko, Y.: Temperature fields generated by the elastodynamic propagation of shear cracks in the Earth. J. Geophys. Res. 109, B01303 (2004)ADS
21.
go back to reference Fish, J.: Practical Multiscaling. Wiley, London (2013) Fish, J.: Practical Multiscaling. Wiley, London (2013)
23.
24.
go back to reference Gambarotta, L., Lagomarsino, S.: A microcrack damage model for brittle materials. Int. J. Solids Struct 30(2), 177–198 (1993)MATHCrossRef Gambarotta, L., Lagomarsino, S.: A microcrack damage model for brittle materials. Int. J. Solids Struct 30(2), 177–198 (1993)MATHCrossRef
25.
go back to reference Grilli, N., Duarte, C.A., Koslowski, M.: Dynamic fracture and hot-spot modeling in energetic composites. J. Appl. Phys. 123(6), 065101 (2018)ADSCrossRef Grilli, N., Duarte, C.A., Koslowski, M.: Dynamic fracture and hot-spot modeling in energetic composites. J. Appl. Phys. 123(6), 065101 (2018)ADSCrossRef
26.
27.
go back to reference Horii, H., Nemat-Nasser, S.: Brittle failure in compression: splitting, faulting and brittle-ductile transition. Philos. Trans. R. Soc. Lond. 319, 337–374 (1986)ADSMATHCrossRef Horii, H., Nemat-Nasser, S.: Brittle failure in compression: splitting, faulting and brittle-ductile transition. Philos. Trans. R. Soc. Lond. 319, 337–374 (1986)ADSMATHCrossRef
28.
go back to reference Huang, C., Subhash, G., Vitton, S.J.: A dynamic damage growth model for uniaxial compressive response of rock aggregates. Mech. Mater. 34, 267–277 (2002)CrossRef Huang, C., Subhash, G., Vitton, S.J.: A dynamic damage growth model for uniaxial compressive response of rock aggregates. Mech. Mater. 34, 267–277 (2002)CrossRef
29.
go back to reference Kachanov, L.M.: A microcrack model of rock inelasticity–part I: frictional sliding on microcracks; part II: propagation of microcracks. Mech. Mater. 1, 19–41 (1982)CrossRef Kachanov, L.M.: A microcrack model of rock inelasticity–part I: frictional sliding on microcracks; part II: propagation of microcracks. Mech. Mater. 1, 19–41 (1982)CrossRef
30.
go back to reference Keita, O., Dascalu, C., François, B.: A two-scale model for dynamic damage evolution. J. Mech. Phys. Solids. 64, 170–183 (2014)ADSMathSciNetCrossRef Keita, O., Dascalu, C., François, B.: A two-scale model for dynamic damage evolution. J. Mech. Phys. Solids. 64, 170–183 (2014)ADSMathSciNetCrossRef
31.
go back to reference Lachenbruch, A.H.: Frictional heating, fluid pressure, and the resistance to fault motion. J. Geophys. Res. 85, 6097–6122 (1980)ADSCrossRef Lachenbruch, A.H.: Frictional heating, fluid pressure, and the resistance to fault motion. J. Geophys. Res. 85, 6097–6122 (1980)ADSCrossRef
32.
go back to reference Lawn, B.R., Marshall, D.B.: Nonlinear stress-strain curves for solids containing closed cracks with friction. J. Mech. Phys. 46(1), 85–113 (1998)ADSMATHCrossRef Lawn, B.R., Marshall, D.B.: Nonlinear stress-strain curves for solids containing closed cracks with friction. J. Mech. Phys. 46(1), 85–113 (1998)ADSMATHCrossRef
33.
go back to reference Lee, X., Ju, J.W.: Micromechanical damage model for brittle solids–II: compressive loadings. J. Eng. Mech. ASCE 117, 1515–1536 (1991)CrossRef Lee, X., Ju, J.W.: Micromechanical damage model for brittle solids–II: compressive loadings. J. Eng. Mech. ASCE 117, 1515–1536 (1991)CrossRef
34.
go back to reference Leguillon, D., Sanchez-Palencia, E.: On the behaviour of a cracked elastic body with (or without) friction. J. Mech. Theor. Appl. 1, 195–209 (1982)MATH Leguillon, D., Sanchez-Palencia, E.: On the behaviour of a cracked elastic body with (or without) friction. J. Mech. Theor. Appl. 1, 195–209 (1982)MATH
35.
go back to reference Nemat-Nasser, S., Obata, M.: A microcrack model of dilatancy in brittle material. J. Appl. Mech. 55, 24–35 (1988)ADSCrossRef Nemat-Nasser, S., Obata, M.: A microcrack model of dilatancy in brittle material. J. Appl. Mech. 55, 24–35 (1988)ADSCrossRef
36.
go back to reference Nemat-Nasser, S., Deng, H.: Strain-rate effect on brittle failure in compression. Acta Metall. Mater. 42, 1013–1024 (1994)CrossRef Nemat-Nasser, S., Deng, H.: Strain-rate effect on brittle failure in compression. Acta Metall. Mater. 42, 1013–1024 (1994)CrossRef
37.
go back to reference Paliwal, B., Ramesh, K.T.: An interacting micro-crack damage model for failure of brittle materials under compression. J. Mech. Phys. Solids 56(3), 896–923 (2008)ADSMATHCrossRef Paliwal, B., Ramesh, K.T.: An interacting micro-crack damage model for failure of brittle materials under compression. J. Mech. Phys. Solids 56(3), 896–923 (2008)ADSMATHCrossRef
39.
go back to reference Ravi-Chandar, K., Lu, J., Yang, B., Zhu, Z.: Failure mode transitions in polymers under high strain rate loading. Int. J. Fract. 101, 33–72 (2000)CrossRef Ravi-Chandar, K., Lu, J., Yang, B., Zhu, Z.: Failure mode transitions in polymers under high strain rate loading. Int. J. Fract. 101, 33–72 (2000)CrossRef
40.
go back to reference Ravichandran, G., Subhash, G.: A micromechanical model for high strain rate behavior of ceramics. Int. J. Solids Struct. 32, 2627–2646 (1995)MATHCrossRef Ravichandran, G., Subhash, G.: A micromechanical model for high strain rate behavior of ceramics. Int. J. Solids Struct. 32, 2627–2646 (1995)MATHCrossRef
41.
go back to reference Rice, J.R.: Heating, weakening and shear localization in earthquake rupture. Philos. Trans. R. Soc. A 375, 20160015 (2017)ADSCrossRef Rice, J.R.: Heating, weakening and shear localization in earthquake rupture. Philos. Trans. R. Soc. A 375, 20160015 (2017)ADSCrossRef
42.
go back to reference Rittel, D.: Experimental investigation of transient thermoelastic effects in dynamic fracture. Int. J. Solids Struct. 35, 2959–2973 (1998)CrossRef Rittel, D.: Experimental investigation of transient thermoelastic effects in dynamic fracture. Int. J. Solids Struct. 35, 2959–2973 (1998)CrossRef
43.
go back to reference Rittel, D.: Thermomechanical aspects of dynamic crack initiation. Int. J. Fract. 99, 199–209 (1999)CrossRef Rittel, D.: Thermomechanical aspects of dynamic crack initiation. Int. J. Fract. 99, 199–209 (1999)CrossRef
44.
go back to reference Rosakis, A.J., Samudrala, O., Coker, D.: Cracks faster than the shear wave speed. Science 284, 1337–1340 (1999)ADSCrossRef Rosakis, A.J., Samudrala, O., Coker, D.: Cracks faster than the shear wave speed. Science 284, 1337–1340 (1999)ADSCrossRef
45.
go back to reference Rosakis, A.J., Samudrala, O., Coker, D.: Intersonic shear crack growth along weak planes. Mat. Res. Innovat. 3, 236–243 (2000)CrossRef Rosakis, A.J., Samudrala, O., Coker, D.: Intersonic shear crack growth along weak planes. Mat. Res. Innovat. 3, 236–243 (2000)CrossRef
46.
go back to reference Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)MATH Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)MATH
47.
go back to reference Schlüter, A., Kuhn, C., Müller, R., Gross, D.: An investigation of intersonic fracture using a phase field model. Arch. Appl. Mech. 86, 321–333 (2016)ADSCrossRef Schlüter, A., Kuhn, C., Müller, R., Gross, D.: An investigation of intersonic fracture using a phase field model. Arch. Appl. Mech. 86, 321–333 (2016)ADSCrossRef
48.
49.
go back to reference Sun, N.S., Hsu, T.R.: Thermomechanical coupling effects on fractured solids. Int. J. Fract. 78, 67–87 (1996)CrossRef Sun, N.S., Hsu, T.R.: Thermomechanical coupling effects on fractured solids. Int. J. Fract. 78, 67–87 (1996)CrossRef
50.
go back to reference Shao, Y., Zhang, Y., Xu, X., Zhou, Z., Li, W., Liu, B.: Effect of crack pattern on the residual strength of ceramics after quenching. J. Am. Ceram. Soc. 94, 2804–2807 (2011)CrossRef Shao, Y., Zhang, Y., Xu, X., Zhou, Z., Li, W., Liu, B.: Effect of crack pattern on the residual strength of ceramics after quenching. J. Am. Ceram. Soc. 94, 2804–2807 (2011)CrossRef
51.
go back to reference Telega, J.J.: Homogenization of fissured elastic solids in the presence of unilateral conditions and friction. Comput. Mech. 6, 109–127 (1990)MATHCrossRef Telega, J.J.: Homogenization of fissured elastic solids in the presence of unilateral conditions and friction. Comput. Mech. 6, 109–127 (1990)MATHCrossRef
52.
go back to reference Truesdell, C.A., Toupin, R.A.: The Classical Field Theories, Handbuch der Physik. Springer, Berlin, Vols. III-1 (1960) Truesdell, C.A., Toupin, R.A.: The Classical Field Theories, Handbuch der Physik. Springer, Berlin, Vols. III-1 (1960)
53.
go back to reference Wrzesniak, A., Dascalu, C., Besuelle, P.: A two-scale time-dependent model of damage: influence of micro-cracks friction. Eur. J. Mech. A/Solids 49, 345–361 (2014)MathSciNetMATHCrossRef Wrzesniak, A., Dascalu, C., Besuelle, P.: A two-scale time-dependent model of damage: influence of micro-cracks friction. Eur. J. Mech. A/Solids 49, 345–361 (2014)MathSciNetMATHCrossRef
54.
go back to reference Zhu, Q.Z., Shao, J.F.: A refined micromechanical damage-friction model with strength prediction for rock-like materials under compression. Int. J. Solids Struct. 60, 75–83 (2015)CrossRef Zhu, Q.Z., Shao, J.F.: A refined micromechanical damage-friction model with strength prediction for rock-like materials under compression. Int. J. Solids Struct. 60, 75–83 (2015)CrossRef
55.
go back to reference Zhu, Q.Z., Zhao, L.Y., Shao, J.F.: Analytical and numerical analysis of frictional damage in quasi brittle materials. J. Mech. Phys. Solids 92, 137–163 (2016)ADSMathSciNetCrossRef Zhu, Q.Z., Zhao, L.Y., Shao, J.F.: Analytical and numerical analysis of frictional damage in quasi brittle materials. J. Mech. Phys. Solids 92, 137–163 (2016)ADSMathSciNetCrossRef
56.
go back to reference Yevtushenko, A.A., Kuciej, M.: Influence of the protective strip properties on distribution of the temperature at transient frictional heating. Int. J. Heat Mass Transf. 52, 376–384 (2009)MATHCrossRef Yevtushenko, A.A., Kuciej, M.: Influence of the protective strip properties on distribution of the temperature at transient frictional heating. Int. J. Heat Mass Transf. 52, 376–384 (2009)MATHCrossRef
57.
go back to reference Yevtushenko, A.A., Kuciej, M., Yevtushenko, O.: Three-element model of frictional heating during braking with contact thermal resistance and time-dependent pressure. Int. J. Therm. Sci. 50, 1116–1124 (2011)MATHCrossRef Yevtushenko, A.A., Kuciej, M., Yevtushenko, O.: Three-element model of frictional heating during braking with contact thermal resistance and time-dependent pressure. Int. J. Therm. Sci. 50, 1116–1124 (2011)MATHCrossRef
Metadata
Title
Two-scale thermomechanical damage model for dynamic shear failure in brittle solids
Authors
Kokouvi Gbetchi
Cristian Dascalu
Publication date
25-08-2020
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 2/2021
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-020-00916-x

Other articles of this Issue 2/2021

Continuum Mechanics and Thermodynamics 2/2021 Go to the issue

Premium Partners