Skip to main content
Erschienen in: Continuum Mechanics and Thermodynamics 2/2021

25.08.2020 | Original Article

Two-scale thermomechanical damage model for dynamic shear failure in brittle solids

verfasst von: Kokouvi Gbetchi, Cristian Dascalu

Erschienen in: Continuum Mechanics and Thermodynamics | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A coupled thermomechanical damage approach for dynamic shear failure in brittle solids is proposed in the present contribution. The model is constructed by asymptotic homogenization from microstructures with dynamically evolving microcracks, in mode II, with unilateral contact and friction conditions on their lips. Crack-tip and frictional heating effects assumed at the small scale give rise to distributed heat sources in the macroscopic temperature equation and specific dissipation terms in the upscaled damage law. The analysis of the effective thermomechanical response of the model reveals strain rate and size effects and the influence of friction and growth of microcracks on the macroscopic thermal evolutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat ABAQUS 6.13, Analysis User’s Manual. Dassault Systems Simulia Corporation, RI, USA (2013) ABAQUS 6.13, Analysis User’s Manual. Dassault Systems Simulia Corporation, RI, USA (2013)
2.
Zurück zum Zitat Andrieux, S., Bamberger, Y., Marigo, J.-J.: Un modele de materiau microfissure pour les betons et les roches. J. Méc. Theor. Appl. 5, 471–513 (1986)MATH Andrieux, S., Bamberger, Y., Marigo, J.-J.: Un modele de materiau microfissure pour les betons et les roches. J. Méc. Theor. Appl. 5, 471–513 (1986)MATH
3.
Zurück zum Zitat Archer, J.S., Lesser, A.J.: Shear band formation and mode II fracture of polymeric glasses. J. Polym. Sci. B: Polym. Phys. 49, 103–114 (2010)ADSCrossRef Archer, J.S., Lesser, A.J.: Shear band formation and mode II fracture of polymeric glasses. J. Polym. Sci. B: Polym. Phys. 49, 103–114 (2010)ADSCrossRef
4.
Zurück zum Zitat Ashby, M.F., Hallam, S.D.: The failure of brittle solids containing small cracks under compressive stress states. Acta Metall. 34, 497–510 (1986)CrossRef Ashby, M.F., Hallam, S.D.: The failure of brittle solids containing small cracks under compressive stress states. Acta Metall. 34, 497–510 (1986)CrossRef
5.
Zurück zum Zitat Atiezo, M.K., Gbetchi, K., Dascalu, C.: Dynamic shear damage with frictional sliding on microcracks. Eng. Fract. Mech. 236 (2020) Atiezo, M.K., Gbetchi, K., Dascalu, C.: Dynamic shear damage with frictional sliding on microcracks. Eng. Fract. Mech. 236 (2020)
6.
Zurück zum Zitat Auriault, J.-L.: Wave propagation and transient heat transfer in thermoelastic composites. Int. J. Heat Mass Transf. 55, 5972–5978 (2012)CrossRef Auriault, J.-L.: Wave propagation and transient heat transfer in thermoelastic composites. Int. J. Heat Mass Transf. 55, 5972–5978 (2012)CrossRef
7.
Zurück zum Zitat Bui, H.D., Ehrlacher, A., Nguyen, Q.S.: Propagation de fissure en thermoélasticité dynamique. J. de Mécanique 19, 697–723 (1980)MathSciNetMATH Bui, H.D., Ehrlacher, A., Nguyen, Q.S.: Propagation de fissure en thermoélasticité dynamique. J. de Mécanique 19, 697–723 (1980)MathSciNetMATH
8.
Zurück zum Zitat Bhatt, H., Rosakis, A., Sammis, G.: A micro-mechanics based constitutive model for brittle failure at high strain rates. J. Appl. Mech. 79(3), 1016–28 (2011) Bhatt, H., Rosakis, A., Sammis, G.: A micro-mechanics based constitutive model for brittle failure at high strain rates. J. Appl. Mech. 79(3), 1016–28 (2011)
9.
Zurück zum Zitat Bjerke, T.W.: Thermomechanical Behavior of Amorphous Polymers During High-Speed Crack Propagation, Ph.D. Dissertation, University of Delaware, Newark, DE (2002) Bjerke, T.W.: Thermomechanical Behavior of Amorphous Polymers During High-Speed Crack Propagation, Ph.D. Dissertation, University of Delaware, Newark, DE (2002)
10.
Zurück zum Zitat Bjerke, T.W., Lambros, J.: Theoretical development and experimental validation of a thermally dissipative cohesive zone model for dynamic fracture of amorphous polymers. J. Mech. Phys. Solids 51, 1947–1970 (2003)CrossRef Bjerke, T.W., Lambros, J.: Theoretical development and experimental validation of a thermally dissipative cohesive zone model for dynamic fracture of amorphous polymers. J. Mech. Phys. Solids 51, 1947–1970 (2003)CrossRef
11.
Zurück zum Zitat Bougaut, O., Rittel, D.: On crack-tip cooling during dynamic crack initiation. Int. J. Solids Struct. 38, 2517–2532 (2001)MATHCrossRef Bougaut, O., Rittel, D.: On crack-tip cooling during dynamic crack initiation. Int. J. Solids Struct. 38, 2517–2532 (2001)MATHCrossRef
12.
Zurück zum Zitat Bjerke, T.W., Lambros, J.: Heating during shearing and opening dominated dynamic fracture of polymers. Exp. Mech. 42(1), 107–114 (2002)CrossRef Bjerke, T.W., Lambros, J.: Heating during shearing and opening dominated dynamic fracture of polymers. Exp. Mech. 42(1), 107–114 (2002)CrossRef
13.
Zurück zum Zitat Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33, 2899–2938 (1996)MATHCrossRef Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33, 2899–2938 (1996)MATHCrossRef
14.
Zurück zum Zitat Dascalu, C.: Multiscale modeling of rapid failure in brittle solids: branching instabilities. Mech. Mater. 116, 77–89 (2018)CrossRef Dascalu, C.: Multiscale modeling of rapid failure in brittle solids: branching instabilities. Mech. Mater. 116, 77–89 (2018)CrossRef
15.
Zurück zum Zitat Dascalu, C., Bilbie, G., Agiasofitou, E.: Damage and size effect in elastic solids: a homogenization approach. Int. J. Solids Struct. 45, 409–430 (2008)MATHCrossRef Dascalu, C., Bilbie, G., Agiasofitou, E.: Damage and size effect in elastic solids: a homogenization approach. Int. J. Solids Struct. 45, 409–430 (2008)MATHCrossRef
16.
Zurück zum Zitat Dascalu, C., Gbetchi, K.: Dynamic evolution of damage by microcracking with heat dissipation. Int. J. Solids Struct. 174–175, 128–144 (2019)CrossRef Dascalu, C., Gbetchi, K.: Dynamic evolution of damage by microcracking with heat dissipation. Int. J. Solids Struct. 174–175, 128–144 (2019)CrossRef
17.
Zurück zum Zitat Dienes, J.K., Zuo, Q.H., Kershner, J.D.: Impact initiation of explosives and propellants via statistical crack mechanics. J. Mech. Phys. Solids 54(6), 1237–1275 (2006)ADSMATHCrossRef Dienes, J.K., Zuo, Q.H., Kershner, J.D.: Impact initiation of explosives and propellants via statistical crack mechanics. J. Mech. Phys. Solids 54(6), 1237–1275 (2006)ADSMATHCrossRef
18.
Zurück zum Zitat Duarte, C.A., Grilli, N., Koslowski, M.: Effect of initial damage variability on hot-spot nucleation in energetic materials. J. Appl. Phys. 124(2), 025104 (2018)ADSCrossRef Duarte, C.A., Grilli, N., Koslowski, M.: Effect of initial damage variability on hot-spot nucleation in energetic materials. J. Appl. Phys. 124(2), 025104 (2018)ADSCrossRef
19.
Zurück zum Zitat Ene, H.I.: On linear thermoelasticity of composite materials. Int. J. Eng. Sci. 21, 443–448 (1983)MATHCrossRef Ene, H.I.: On linear thermoelasticity of composite materials. Int. J. Eng. Sci. 21, 443–448 (1983)MATHCrossRef
20.
Zurück zum Zitat Fialko, Y.: Temperature fields generated by the elastodynamic propagation of shear cracks in the Earth. J. Geophys. Res. 109, B01303 (2004)ADS Fialko, Y.: Temperature fields generated by the elastodynamic propagation of shear cracks in the Earth. J. Geophys. Res. 109, B01303 (2004)ADS
21.
Zurück zum Zitat Fish, J.: Practical Multiscaling. Wiley, London (2013) Fish, J.: Practical Multiscaling. Wiley, London (2013)
23.
24.
Zurück zum Zitat Gambarotta, L., Lagomarsino, S.: A microcrack damage model for brittle materials. Int. J. Solids Struct 30(2), 177–198 (1993)MATHCrossRef Gambarotta, L., Lagomarsino, S.: A microcrack damage model for brittle materials. Int. J. Solids Struct 30(2), 177–198 (1993)MATHCrossRef
25.
Zurück zum Zitat Grilli, N., Duarte, C.A., Koslowski, M.: Dynamic fracture and hot-spot modeling in energetic composites. J. Appl. Phys. 123(6), 065101 (2018)ADSCrossRef Grilli, N., Duarte, C.A., Koslowski, M.: Dynamic fracture and hot-spot modeling in energetic composites. J. Appl. Phys. 123(6), 065101 (2018)ADSCrossRef
26.
Zurück zum Zitat Halm, D., Dragon, A.: An anisotropic model of damage and frictional sliding for brittle materials. Eur. J. Mech. A Solids 17, 439–460 (1998)ADSMathSciNetMATHCrossRef Halm, D., Dragon, A.: An anisotropic model of damage and frictional sliding for brittle materials. Eur. J. Mech. A Solids 17, 439–460 (1998)ADSMathSciNetMATHCrossRef
27.
Zurück zum Zitat Horii, H., Nemat-Nasser, S.: Brittle failure in compression: splitting, faulting and brittle-ductile transition. Philos. Trans. R. Soc. Lond. 319, 337–374 (1986)ADSMATHCrossRef Horii, H., Nemat-Nasser, S.: Brittle failure in compression: splitting, faulting and brittle-ductile transition. Philos. Trans. R. Soc. Lond. 319, 337–374 (1986)ADSMATHCrossRef
28.
Zurück zum Zitat Huang, C., Subhash, G., Vitton, S.J.: A dynamic damage growth model for uniaxial compressive response of rock aggregates. Mech. Mater. 34, 267–277 (2002)CrossRef Huang, C., Subhash, G., Vitton, S.J.: A dynamic damage growth model for uniaxial compressive response of rock aggregates. Mech. Mater. 34, 267–277 (2002)CrossRef
29.
Zurück zum Zitat Kachanov, L.M.: A microcrack model of rock inelasticity–part I: frictional sliding on microcracks; part II: propagation of microcracks. Mech. Mater. 1, 19–41 (1982)CrossRef Kachanov, L.M.: A microcrack model of rock inelasticity–part I: frictional sliding on microcracks; part II: propagation of microcracks. Mech. Mater. 1, 19–41 (1982)CrossRef
30.
Zurück zum Zitat Keita, O., Dascalu, C., François, B.: A two-scale model for dynamic damage evolution. J. Mech. Phys. Solids. 64, 170–183 (2014)ADSMathSciNetCrossRef Keita, O., Dascalu, C., François, B.: A two-scale model for dynamic damage evolution. J. Mech. Phys. Solids. 64, 170–183 (2014)ADSMathSciNetCrossRef
31.
Zurück zum Zitat Lachenbruch, A.H.: Frictional heating, fluid pressure, and the resistance to fault motion. J. Geophys. Res. 85, 6097–6122 (1980)ADSCrossRef Lachenbruch, A.H.: Frictional heating, fluid pressure, and the resistance to fault motion. J. Geophys. Res. 85, 6097–6122 (1980)ADSCrossRef
32.
Zurück zum Zitat Lawn, B.R., Marshall, D.B.: Nonlinear stress-strain curves for solids containing closed cracks with friction. J. Mech. Phys. 46(1), 85–113 (1998)ADSMATHCrossRef Lawn, B.R., Marshall, D.B.: Nonlinear stress-strain curves for solids containing closed cracks with friction. J. Mech. Phys. 46(1), 85–113 (1998)ADSMATHCrossRef
33.
Zurück zum Zitat Lee, X., Ju, J.W.: Micromechanical damage model for brittle solids–II: compressive loadings. J. Eng. Mech. ASCE 117, 1515–1536 (1991)CrossRef Lee, X., Ju, J.W.: Micromechanical damage model for brittle solids–II: compressive loadings. J. Eng. Mech. ASCE 117, 1515–1536 (1991)CrossRef
34.
Zurück zum Zitat Leguillon, D., Sanchez-Palencia, E.: On the behaviour of a cracked elastic body with (or without) friction. J. Mech. Theor. Appl. 1, 195–209 (1982)MATH Leguillon, D., Sanchez-Palencia, E.: On the behaviour of a cracked elastic body with (or without) friction. J. Mech. Theor. Appl. 1, 195–209 (1982)MATH
35.
Zurück zum Zitat Nemat-Nasser, S., Obata, M.: A microcrack model of dilatancy in brittle material. J. Appl. Mech. 55, 24–35 (1988)ADSCrossRef Nemat-Nasser, S., Obata, M.: A microcrack model of dilatancy in brittle material. J. Appl. Mech. 55, 24–35 (1988)ADSCrossRef
36.
Zurück zum Zitat Nemat-Nasser, S., Deng, H.: Strain-rate effect on brittle failure in compression. Acta Metall. Mater. 42, 1013–1024 (1994)CrossRef Nemat-Nasser, S., Deng, H.: Strain-rate effect on brittle failure in compression. Acta Metall. Mater. 42, 1013–1024 (1994)CrossRef
37.
Zurück zum Zitat Paliwal, B., Ramesh, K.T.: An interacting micro-crack damage model for failure of brittle materials under compression. J. Mech. Phys. Solids 56(3), 896–923 (2008)ADSMATHCrossRef Paliwal, B., Ramesh, K.T.: An interacting micro-crack damage model for failure of brittle materials under compression. J. Mech. Phys. Solids 56(3), 896–923 (2008)ADSMATHCrossRef
39.
Zurück zum Zitat Ravi-Chandar, K., Lu, J., Yang, B., Zhu, Z.: Failure mode transitions in polymers under high strain rate loading. Int. J. Fract. 101, 33–72 (2000)CrossRef Ravi-Chandar, K., Lu, J., Yang, B., Zhu, Z.: Failure mode transitions in polymers under high strain rate loading. Int. J. Fract. 101, 33–72 (2000)CrossRef
40.
Zurück zum Zitat Ravichandran, G., Subhash, G.: A micromechanical model for high strain rate behavior of ceramics. Int. J. Solids Struct. 32, 2627–2646 (1995)MATHCrossRef Ravichandran, G., Subhash, G.: A micromechanical model for high strain rate behavior of ceramics. Int. J. Solids Struct. 32, 2627–2646 (1995)MATHCrossRef
41.
Zurück zum Zitat Rice, J.R.: Heating, weakening and shear localization in earthquake rupture. Philos. Trans. R. Soc. A 375, 20160015 (2017)ADSCrossRef Rice, J.R.: Heating, weakening and shear localization in earthquake rupture. Philos. Trans. R. Soc. A 375, 20160015 (2017)ADSCrossRef
42.
Zurück zum Zitat Rittel, D.: Experimental investigation of transient thermoelastic effects in dynamic fracture. Int. J. Solids Struct. 35, 2959–2973 (1998)CrossRef Rittel, D.: Experimental investigation of transient thermoelastic effects in dynamic fracture. Int. J. Solids Struct. 35, 2959–2973 (1998)CrossRef
43.
Zurück zum Zitat Rittel, D.: Thermomechanical aspects of dynamic crack initiation. Int. J. Fract. 99, 199–209 (1999)CrossRef Rittel, D.: Thermomechanical aspects of dynamic crack initiation. Int. J. Fract. 99, 199–209 (1999)CrossRef
44.
Zurück zum Zitat Rosakis, A.J., Samudrala, O., Coker, D.: Cracks faster than the shear wave speed. Science 284, 1337–1340 (1999)ADSCrossRef Rosakis, A.J., Samudrala, O., Coker, D.: Cracks faster than the shear wave speed. Science 284, 1337–1340 (1999)ADSCrossRef
45.
Zurück zum Zitat Rosakis, A.J., Samudrala, O., Coker, D.: Intersonic shear crack growth along weak planes. Mat. Res. Innovat. 3, 236–243 (2000)CrossRef Rosakis, A.J., Samudrala, O., Coker, D.: Intersonic shear crack growth along weak planes. Mat. Res. Innovat. 3, 236–243 (2000)CrossRef
46.
Zurück zum Zitat Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)MATH Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)MATH
47.
Zurück zum Zitat Schlüter, A., Kuhn, C., Müller, R., Gross, D.: An investigation of intersonic fracture using a phase field model. Arch. Appl. Mech. 86, 321–333 (2016)ADSCrossRef Schlüter, A., Kuhn, C., Müller, R., Gross, D.: An investigation of intersonic fracture using a phase field model. Arch. Appl. Mech. 86, 321–333 (2016)ADSCrossRef
48.
49.
Zurück zum Zitat Sun, N.S., Hsu, T.R.: Thermomechanical coupling effects on fractured solids. Int. J. Fract. 78, 67–87 (1996)CrossRef Sun, N.S., Hsu, T.R.: Thermomechanical coupling effects on fractured solids. Int. J. Fract. 78, 67–87 (1996)CrossRef
50.
Zurück zum Zitat Shao, Y., Zhang, Y., Xu, X., Zhou, Z., Li, W., Liu, B.: Effect of crack pattern on the residual strength of ceramics after quenching. J. Am. Ceram. Soc. 94, 2804–2807 (2011)CrossRef Shao, Y., Zhang, Y., Xu, X., Zhou, Z., Li, W., Liu, B.: Effect of crack pattern on the residual strength of ceramics after quenching. J. Am. Ceram. Soc. 94, 2804–2807 (2011)CrossRef
51.
Zurück zum Zitat Telega, J.J.: Homogenization of fissured elastic solids in the presence of unilateral conditions and friction. Comput. Mech. 6, 109–127 (1990)MATHCrossRef Telega, J.J.: Homogenization of fissured elastic solids in the presence of unilateral conditions and friction. Comput. Mech. 6, 109–127 (1990)MATHCrossRef
52.
Zurück zum Zitat Truesdell, C.A., Toupin, R.A.: The Classical Field Theories, Handbuch der Physik. Springer, Berlin, Vols. III-1 (1960) Truesdell, C.A., Toupin, R.A.: The Classical Field Theories, Handbuch der Physik. Springer, Berlin, Vols. III-1 (1960)
53.
Zurück zum Zitat Wrzesniak, A., Dascalu, C., Besuelle, P.: A two-scale time-dependent model of damage: influence of micro-cracks friction. Eur. J. Mech. A/Solids 49, 345–361 (2014)MathSciNetMATHCrossRef Wrzesniak, A., Dascalu, C., Besuelle, P.: A two-scale time-dependent model of damage: influence of micro-cracks friction. Eur. J. Mech. A/Solids 49, 345–361 (2014)MathSciNetMATHCrossRef
54.
Zurück zum Zitat Zhu, Q.Z., Shao, J.F.: A refined micromechanical damage-friction model with strength prediction for rock-like materials under compression. Int. J. Solids Struct. 60, 75–83 (2015)CrossRef Zhu, Q.Z., Shao, J.F.: A refined micromechanical damage-friction model with strength prediction for rock-like materials under compression. Int. J. Solids Struct. 60, 75–83 (2015)CrossRef
55.
Zurück zum Zitat Zhu, Q.Z., Zhao, L.Y., Shao, J.F.: Analytical and numerical analysis of frictional damage in quasi brittle materials. J. Mech. Phys. Solids 92, 137–163 (2016)ADSMathSciNetCrossRef Zhu, Q.Z., Zhao, L.Y., Shao, J.F.: Analytical and numerical analysis of frictional damage in quasi brittle materials. J. Mech. Phys. Solids 92, 137–163 (2016)ADSMathSciNetCrossRef
56.
Zurück zum Zitat Yevtushenko, A.A., Kuciej, M.: Influence of the protective strip properties on distribution of the temperature at transient frictional heating. Int. J. Heat Mass Transf. 52, 376–384 (2009)MATHCrossRef Yevtushenko, A.A., Kuciej, M.: Influence of the protective strip properties on distribution of the temperature at transient frictional heating. Int. J. Heat Mass Transf. 52, 376–384 (2009)MATHCrossRef
57.
Zurück zum Zitat Yevtushenko, A.A., Kuciej, M., Yevtushenko, O.: Three-element model of frictional heating during braking with contact thermal resistance and time-dependent pressure. Int. J. Therm. Sci. 50, 1116–1124 (2011)MATHCrossRef Yevtushenko, A.A., Kuciej, M., Yevtushenko, O.: Three-element model of frictional heating during braking with contact thermal resistance and time-dependent pressure. Int. J. Therm. Sci. 50, 1116–1124 (2011)MATHCrossRef
Metadaten
Titel
Two-scale thermomechanical damage model for dynamic shear failure in brittle solids
verfasst von
Kokouvi Gbetchi
Cristian Dascalu
Publikationsdatum
25.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Continuum Mechanics and Thermodynamics / Ausgabe 2/2021
Print ISSN: 0935-1175
Elektronische ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-020-00916-x

Weitere Artikel der Ausgabe 2/2021

Continuum Mechanics and Thermodynamics 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.