Skip to main content
Top
Published in: Wireless Networks 6/2017

09-04-2016

Two-step fuzzy logic system to achieve energy efficiency and prolonging the lifetime of WSNs

Authors: Yahya Kord Tamandani, Mohammad Ubaidullah Bokhari, Qahtan Makki Shallal

Published in: Wireless Networks | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mainly because of resource restrictions in wireless sensor networks (WSNs), extending the lifetime of the network, has gained significant attention in the last several years. As energy becomes a quite challenging issue in these networks, clustering protocols are employed to deal with this problem. One of the main research areas in cluster-based routing protocols is fair distribution and balancing the overall energy consumption in the WSN, by selecting the most suitable cluster heads (CHs). In order to reduce the energy consumption and enhancing the CHs selection process a new routing protocol based on fuzzy logic has been proposed. There exist several algorithms based of fuzzy logic to select the most proper CHs for the network. But these algorithms do not consider all the important parameters and information of the sensor nodes in order to guarantee the optimal selection of the CHs. In The proposed algorithm, a two-step fuzzy logic system is used to select the appropriate CHs. The selection of CHs is based on six descriptors; residual energy, density, distance to base station, vulnerability index, centrality and distance between CHs. The result of the simulation indicates that, the proposed algorithm performs better comparing with some other similar approaches in case of fair distribution and balancing of the overall energy consumption.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arampatzis, T., et al. (2005). A survey of applications of wireless sensors and wireless sensor networks. In Proceedings of the 2005 IEEE International Symposium on Intelligent Control, 2005, Mediterranean Conference on Control and Automation (pp. 719–724), 27–29 June 2005. Arampatzis, T., et al. (2005). A survey of applications of wireless sensors and wireless sensor networks. In Proceedings of the 2005 IEEE International Symposium on Intelligent Control, 2005, Mediterranean Conference on Control and Automation (pp. 719–724), 27–29 June 2005.
2.
go back to reference Qin, Y., et al. (2016). When things matter: A survey on data-centric internet of things. Journal of Network and Computer Applications, 64(2016), 137–153.CrossRef Qin, Y., et al. (2016). When things matter: A survey on data-centric internet of things. Journal of Network and Computer Applications, 64(2016), 137–153.CrossRef
3.
go back to reference Gubbi, J., et al. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.CrossRef Gubbi, J., et al. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.CrossRef
4.
go back to reference Sheng, Z., et al. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.CrossRef Sheng, Z., et al. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.CrossRef
5.
go back to reference Jing, Q., et al. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.CrossRef Jing, Q., et al. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.CrossRef
6.
go back to reference Whitmore, A., et al. (2015). The internet of things—A survey of topics and trends. Information Systems Frontiers, 17(2), 261–274.CrossRef Whitmore, A., et al. (2015). The internet of things—A survey of topics and trends. Information Systems Frontiers, 17(2), 261–274.CrossRef
7.
go back to reference Yan, Z., et al. (2014). A survey on trust management for internet of things. Journal of Network and Computer Applications, 42(2014), 120–134.CrossRef Yan, Z., et al. (2014). A survey on trust management for internet of things. Journal of Network and Computer Applications, 42(2014), 120–134.CrossRef
11.
go back to reference Tamandani, Y. K., & Bokhari, M. U. (2015). The impact of sink location on the performance, throughput and energy efficiency of the WSNs. In 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Noida (pp. 1–5). doi:10.1109/ICRITO.2015.7359244. Tamandani, Y. K., & Bokhari, M. U. (2015). The impact of sink location on the performance, throughput and energy efficiency of the WSNs. In 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Noida (pp. 1–5). doi:10.​1109/​ICRITO.​2015.​7359244.
12.
go back to reference Yao, Y., et al. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.CrossRef Yao, Y., et al. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.CrossRef
13.
go back to reference Chilamkurti, N., et al. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors. Article ID 134165. doi:10.1155/2009/134165. Chilamkurti, N., et al. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors. Article ID 134165. doi:10.​1155/​2009/​134165.
15.
16.
go back to reference Saleem, M., et al. (2012). BeeSensor: An energy-efficient and scalable routing protocol for wireless sensor networks. Information Sciences, 200, 38–56.CrossRef Saleem, M., et al. (2012). BeeSensor: An energy-efficient and scalable routing protocol for wireless sensor networks. Information Sciences, 200, 38–56.CrossRef
18.
go back to reference Tamandani, Y. K., & Bokhari, M. U. (2016). SEPFL routing protocol based on fuzzy logic control to extend the lifetime and throughput of the wireless sensor network. Wireless Networks, 22(2), 647–653.CrossRef Tamandani, Y. K., & Bokhari, M. U. (2016). SEPFL routing protocol based on fuzzy logic control to extend the lifetime and throughput of the wireless sensor network. Wireless Networks, 22(2), 647–653.CrossRef
19.
go back to reference Heinzelman, W., et al. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000. IEEE. Heinzelman, W., et al. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000. IEEE.
20.
go back to reference Xiao, Y., et al. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554. doi:10.1109/TMC.2011.190.CrossRef Xiao, Y., et al. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554. doi:10.​1109/​TMC.​2011.​190.CrossRef
21.
go back to reference Dvir, A., & Vasilakos, A. (2010). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 40(4), 405.CrossRef Dvir, A., & Vasilakos, A. (2010). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 40(4), 405.CrossRef
22.
go back to reference Vasilakos, A., et al. (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press. Vasilakos, A., et al. (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.
23.
go back to reference Lopez-Perez, D., et al. (2013). On distributed and coordinated resource allocation for interference mitigation in self-organizing LTE networks. IEEE/ACM Transactions on Networking, 21(4), 1145–1158.CrossRef Lopez-Perez, D., et al. (2013). On distributed and coordinated resource allocation for interference mitigation in self-organizing LTE networks. IEEE/ACM Transactions on Networking, 21(4), 1145–1158.CrossRef
24.
go back to reference Vasilakos, A., et al. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52(2015), 1–10.CrossRef Vasilakos, A., et al. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52(2015), 1–10.CrossRef
25.
go back to reference Yang, M., et al. (2014). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications., 20(1), 4–18.CrossRef Yang, M., et al. (2014). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications., 20(1), 4–18.CrossRef
26.
go back to reference Sindhwani, N., & Vaid, R. (2013). VLEACH: An energy efficient communication protocol for WSN. Mechanica Confab, 2(2), 79–84. Sindhwani, N., & Vaid, R. (2013). VLEACH: An energy efficient communication protocol for WSN. Mechanica Confab, 2(2), 79–84.
27.
go back to reference Zeng, Y., et al. (2012). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRef Zeng, Y., et al. (2012). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRef
28.
go back to reference Mehmood, A., et al. (2015). Energy-efficient multi-level and distance-aware clustering mechanism for WSNs. International Journal of Communication Systems, 28(5), 972–989.CrossRef Mehmood, A., et al. (2015). Energy-efficient multi-level and distance-aware clustering mechanism for WSNs. International Journal of Communication Systems, 28(5), 972–989.CrossRef
30.
go back to reference Ganesh, S., & Amutha, R. (2013). Efficient and secure routing protocol for wireless sensor networks through SNR based dynamic clustering mechanisms. Journal of Communications and Networks, 15(4), 422–429.CrossRef Ganesh, S., & Amutha, R. (2013). Efficient and secure routing protocol for wireless sensor networks through SNR based dynamic clustering mechanisms. Journal of Communications and Networks, 15(4), 422–429.CrossRef
32.
go back to reference Xiang, L., Luo, J., & Rosenberg, C. (2013). Compressed data aggregation: Energy-efficient and high-fidelity data collection. IEEE/ACM Transactions on Networking (TON), 21(6), 1722–1735.CrossRef Xiang, L., Luo, J., & Rosenberg, C. (2013). Compressed data aggregation: Energy-efficient and high-fidelity data collection. IEEE/ACM Transactions on Networking (TON), 21(6), 1722–1735.CrossRef
33.
go back to reference Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823. doi:10.1109/TNET.2014.2306592.CrossRef Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823. doi:10.​1109/​TNET.​2014.​2306592.CrossRef
34.
go back to reference Martinez-de, D., et al. (2013). Cooperation between uas and wireless sensor networks for efficient data collection in large environments. Journal of Intelligent and Robotic Systems, 70(1-4), 491–508. Martinez-de, D., et al. (2013). Cooperation between uas and wireless sensor networks for efficient data collection in large environments. Journal of Intelligent and Robotic Systems, 70(1-4), 491–508.
35.
go back to reference Liu, X., et al. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.CrossRef Liu, X., et al. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.CrossRef
36.
go back to reference Xiang, L., et al. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Salt Lake City, UT (pp. 46–54). doi:10.1109/SAHCN.2011.5984932. Xiang, L., et al. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Salt Lake City, UT (pp. 46–54). doi:10.​1109/​SAHCN.​2011.​5984932.
37.
go back to reference Wei, G., et al. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.MathSciNetCrossRef Wei, G., et al. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.MathSciNetCrossRef
38.
go back to reference Prabhavathi, S., et al. (2016). Energy efficient dynamic reconfiguration of routing agents for WSN data aggregation. In N. R. Shetty, N. H. Prasad, & N. Nalini (Eds.), Emerging research in computing, information, communication and applications (pp. 291–301). Springer India. Prabhavathi, S., et al. (2016). Energy efficient dynamic reconfiguration of routing agents for WSN data aggregation. In N. R. Shetty, N. H. Prasad, & N. Nalini (Eds.), Emerging research in computing, information, communication and applications (pp. 291–301). Springer India.
39.
go back to reference Sengupta, S., et al. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), 1093–1102.CrossRef Sengupta, S., et al. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), 1093–1102.CrossRef
42.
go back to reference Acampora, G., et al. (2010). Interoperable and adaptive fuzzy services for ambient intelligence applications. ACM Transactions on Autonomous and Adaptive Systems, 5(2), 1–26.CrossRef Acampora, G., et al. (2010). Interoperable and adaptive fuzzy services for ambient intelligence applications. ACM Transactions on Autonomous and Adaptive Systems, 5(2), 1–26.CrossRef
43.
go back to reference Gupta, I., et al. (2005). Cluster-head election using fuzzy logic for wireless sensor networks. In Communication Networks and Services Research Conference, 2005. Proceedings of the 3rd Annual. IEEE. Gupta, I., et al. (2005). Cluster-head election using fuzzy logic for wireless sensor networks. In Communication Networks and Services Research Conference, 2005. Proceedings of the 3rd Annual. IEEE.
44.
45.
go back to reference AbdulAlim, M. A., et al. (2013). A fuzzy based clustering protocol for energy-efficient wireless sensor networks. Advanced Materials Research, 760–762, 685–690.CrossRef AbdulAlim, M. A., et al. (2013). A fuzzy based clustering protocol for energy-efficient wireless sensor networks. Advanced Materials Research, 760–762, 685–690.CrossRef
46.
go back to reference Nayak, P., & Devulapalli, A. (2016). A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime. IEEE Sensors Journal, 16(1), 137–144.CrossRef Nayak, P., & Devulapalli, A. (2016). A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime. IEEE Sensors Journal, 16(1), 137–144.CrossRef
47.
go back to reference Kim, J., et al. (2008). CHEF: Cluster head election mechanism using fuzzy logic in wireless sensor networks. In 10th International Conference on Advanced Communication Technology, 2008. ICACT 2008 (Vol. 1). IEEE. Kim, J., et al. (2008). CHEF: Cluster head election mechanism using fuzzy logic in wireless sensor networks. In 10th International Conference on Advanced Communication Technology, 2008. ICACT 2008 (Vol. 1). IEEE.
48.
go back to reference Heinzelman, W., et al. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef Heinzelman, W., et al. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef
Metadata
Title
Two-step fuzzy logic system to achieve energy efficiency and prolonging the lifetime of WSNs
Authors
Yahya Kord Tamandani
Mohammad Ubaidullah Bokhari
Qahtan Makki Shallal
Publication date
09-04-2016
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2017
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1266-3

Other articles of this Issue 6/2017

Wireless Networks 6/2017 Go to the issue