Skip to main content
Erschienen in: Wireless Networks 6/2017

09.04.2016

Two-step fuzzy logic system to achieve energy efficiency and prolonging the lifetime of WSNs

verfasst von: Yahya Kord Tamandani, Mohammad Ubaidullah Bokhari, Qahtan Makki Shallal

Erschienen in: Wireless Networks | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mainly because of resource restrictions in wireless sensor networks (WSNs), extending the lifetime of the network, has gained significant attention in the last several years. As energy becomes a quite challenging issue in these networks, clustering protocols are employed to deal with this problem. One of the main research areas in cluster-based routing protocols is fair distribution and balancing the overall energy consumption in the WSN, by selecting the most suitable cluster heads (CHs). In order to reduce the energy consumption and enhancing the CHs selection process a new routing protocol based on fuzzy logic has been proposed. There exist several algorithms based of fuzzy logic to select the most proper CHs for the network. But these algorithms do not consider all the important parameters and information of the sensor nodes in order to guarantee the optimal selection of the CHs. In The proposed algorithm, a two-step fuzzy logic system is used to select the appropriate CHs. The selection of CHs is based on six descriptors; residual energy, density, distance to base station, vulnerability index, centrality and distance between CHs. The result of the simulation indicates that, the proposed algorithm performs better comparing with some other similar approaches in case of fair distribution and balancing of the overall energy consumption.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arampatzis, T., et al. (2005). A survey of applications of wireless sensors and wireless sensor networks. In Proceedings of the 2005 IEEE International Symposium on Intelligent Control, 2005, Mediterranean Conference on Control and Automation (pp. 719–724), 27–29 June 2005. Arampatzis, T., et al. (2005). A survey of applications of wireless sensors and wireless sensor networks. In Proceedings of the 2005 IEEE International Symposium on Intelligent Control, 2005, Mediterranean Conference on Control and Automation (pp. 719–724), 27–29 June 2005.
2.
Zurück zum Zitat Qin, Y., et al. (2016). When things matter: A survey on data-centric internet of things. Journal of Network and Computer Applications, 64(2016), 137–153.CrossRef Qin, Y., et al. (2016). When things matter: A survey on data-centric internet of things. Journal of Network and Computer Applications, 64(2016), 137–153.CrossRef
3.
Zurück zum Zitat Gubbi, J., et al. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.CrossRef Gubbi, J., et al. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.CrossRef
4.
Zurück zum Zitat Sheng, Z., et al. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.CrossRef Sheng, Z., et al. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.CrossRef
5.
Zurück zum Zitat Jing, Q., et al. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.CrossRef Jing, Q., et al. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.CrossRef
6.
Zurück zum Zitat Whitmore, A., et al. (2015). The internet of things—A survey of topics and trends. Information Systems Frontiers, 17(2), 261–274.CrossRef Whitmore, A., et al. (2015). The internet of things—A survey of topics and trends. Information Systems Frontiers, 17(2), 261–274.CrossRef
7.
Zurück zum Zitat Yan, Z., et al. (2014). A survey on trust management for internet of things. Journal of Network and Computer Applications, 42(2014), 120–134.CrossRef Yan, Z., et al. (2014). A survey on trust management for internet of things. Journal of Network and Computer Applications, 42(2014), 120–134.CrossRef
11.
Zurück zum Zitat Tamandani, Y. K., & Bokhari, M. U. (2015). The impact of sink location on the performance, throughput and energy efficiency of the WSNs. In 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Noida (pp. 1–5). doi:10.1109/ICRITO.2015.7359244. Tamandani, Y. K., & Bokhari, M. U. (2015). The impact of sink location on the performance, throughput and energy efficiency of the WSNs. In 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Noida (pp. 1–5). doi:10.​1109/​ICRITO.​2015.​7359244.
12.
Zurück zum Zitat Yao, Y., et al. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.CrossRef Yao, Y., et al. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.CrossRef
13.
Zurück zum Zitat Chilamkurti, N., et al. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors. Article ID 134165. doi:10.1155/2009/134165. Chilamkurti, N., et al. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors. Article ID 134165. doi:10.​1155/​2009/​134165.
15.
Zurück zum Zitat Li, P., et al. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273. doi:10.1109/TPDS.2013.2297105.CrossRef Li, P., et al. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273. doi:10.​1109/​TPDS.​2013.​2297105.CrossRef
16.
Zurück zum Zitat Saleem, M., et al. (2012). BeeSensor: An energy-efficient and scalable routing protocol for wireless sensor networks. Information Sciences, 200, 38–56.CrossRef Saleem, M., et al. (2012). BeeSensor: An energy-efficient and scalable routing protocol for wireless sensor networks. Information Sciences, 200, 38–56.CrossRef
18.
Zurück zum Zitat Tamandani, Y. K., & Bokhari, M. U. (2016). SEPFL routing protocol based on fuzzy logic control to extend the lifetime and throughput of the wireless sensor network. Wireless Networks, 22(2), 647–653.CrossRef Tamandani, Y. K., & Bokhari, M. U. (2016). SEPFL routing protocol based on fuzzy logic control to extend the lifetime and throughput of the wireless sensor network. Wireless Networks, 22(2), 647–653.CrossRef
19.
Zurück zum Zitat Heinzelman, W., et al. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000. IEEE. Heinzelman, W., et al. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000. IEEE.
20.
Zurück zum Zitat Xiao, Y., et al. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554. doi:10.1109/TMC.2011.190.CrossRef Xiao, Y., et al. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554. doi:10.​1109/​TMC.​2011.​190.CrossRef
21.
Zurück zum Zitat Dvir, A., & Vasilakos, A. (2010). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 40(4), 405.CrossRef Dvir, A., & Vasilakos, A. (2010). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 40(4), 405.CrossRef
22.
Zurück zum Zitat Vasilakos, A., et al. (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press. Vasilakos, A., et al. (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.
23.
Zurück zum Zitat Lopez-Perez, D., et al. (2013). On distributed and coordinated resource allocation for interference mitigation in self-organizing LTE networks. IEEE/ACM Transactions on Networking, 21(4), 1145–1158.CrossRef Lopez-Perez, D., et al. (2013). On distributed and coordinated resource allocation for interference mitigation in self-organizing LTE networks. IEEE/ACM Transactions on Networking, 21(4), 1145–1158.CrossRef
24.
Zurück zum Zitat Vasilakos, A., et al. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52(2015), 1–10.CrossRef Vasilakos, A., et al. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52(2015), 1–10.CrossRef
25.
Zurück zum Zitat Yang, M., et al. (2014). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications., 20(1), 4–18.CrossRef Yang, M., et al. (2014). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications., 20(1), 4–18.CrossRef
26.
Zurück zum Zitat Sindhwani, N., & Vaid, R. (2013). VLEACH: An energy efficient communication protocol for WSN. Mechanica Confab, 2(2), 79–84. Sindhwani, N., & Vaid, R. (2013). VLEACH: An energy efficient communication protocol for WSN. Mechanica Confab, 2(2), 79–84.
27.
Zurück zum Zitat Zeng, Y., et al. (2012). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRef Zeng, Y., et al. (2012). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRef
28.
Zurück zum Zitat Mehmood, A., et al. (2015). Energy-efficient multi-level and distance-aware clustering mechanism for WSNs. International Journal of Communication Systems, 28(5), 972–989.CrossRef Mehmood, A., et al. (2015). Energy-efficient multi-level and distance-aware clustering mechanism for WSNs. International Journal of Communication Systems, 28(5), 972–989.CrossRef
30.
Zurück zum Zitat Ganesh, S., & Amutha, R. (2013). Efficient and secure routing protocol for wireless sensor networks through SNR based dynamic clustering mechanisms. Journal of Communications and Networks, 15(4), 422–429.CrossRef Ganesh, S., & Amutha, R. (2013). Efficient and secure routing protocol for wireless sensor networks through SNR based dynamic clustering mechanisms. Journal of Communications and Networks, 15(4), 422–429.CrossRef
32.
Zurück zum Zitat Xiang, L., Luo, J., & Rosenberg, C. (2013). Compressed data aggregation: Energy-efficient and high-fidelity data collection. IEEE/ACM Transactions on Networking (TON), 21(6), 1722–1735.CrossRef Xiang, L., Luo, J., & Rosenberg, C. (2013). Compressed data aggregation: Energy-efficient and high-fidelity data collection. IEEE/ACM Transactions on Networking (TON), 21(6), 1722–1735.CrossRef
33.
Zurück zum Zitat Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823. doi:10.1109/TNET.2014.2306592.CrossRef Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823. doi:10.​1109/​TNET.​2014.​2306592.CrossRef
34.
Zurück zum Zitat Martinez-de, D., et al. (2013). Cooperation between uas and wireless sensor networks for efficient data collection in large environments. Journal of Intelligent and Robotic Systems, 70(1-4), 491–508. Martinez-de, D., et al. (2013). Cooperation between uas and wireless sensor networks for efficient data collection in large environments. Journal of Intelligent and Robotic Systems, 70(1-4), 491–508.
35.
Zurück zum Zitat Liu, X., et al. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.CrossRef Liu, X., et al. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.CrossRef
36.
Zurück zum Zitat Xiang, L., et al. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Salt Lake City, UT (pp. 46–54). doi:10.1109/SAHCN.2011.5984932. Xiang, L., et al. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Salt Lake City, UT (pp. 46–54). doi:10.​1109/​SAHCN.​2011.​5984932.
37.
Zurück zum Zitat Wei, G., et al. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.MathSciNetCrossRef Wei, G., et al. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.MathSciNetCrossRef
38.
Zurück zum Zitat Prabhavathi, S., et al. (2016). Energy efficient dynamic reconfiguration of routing agents for WSN data aggregation. In N. R. Shetty, N. H. Prasad, & N. Nalini (Eds.), Emerging research in computing, information, communication and applications (pp. 291–301). Springer India. Prabhavathi, S., et al. (2016). Energy efficient dynamic reconfiguration of routing agents for WSN data aggregation. In N. R. Shetty, N. H. Prasad, & N. Nalini (Eds.), Emerging research in computing, information, communication and applications (pp. 291–301). Springer India.
39.
Zurück zum Zitat Sengupta, S., et al. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), 1093–1102.CrossRef Sengupta, S., et al. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), 1093–1102.CrossRef
40.
42.
Zurück zum Zitat Acampora, G., et al. (2010). Interoperable and adaptive fuzzy services for ambient intelligence applications. ACM Transactions on Autonomous and Adaptive Systems, 5(2), 1–26.CrossRef Acampora, G., et al. (2010). Interoperable and adaptive fuzzy services for ambient intelligence applications. ACM Transactions on Autonomous and Adaptive Systems, 5(2), 1–26.CrossRef
43.
Zurück zum Zitat Gupta, I., et al. (2005). Cluster-head election using fuzzy logic for wireless sensor networks. In Communication Networks and Services Research Conference, 2005. Proceedings of the 3rd Annual. IEEE. Gupta, I., et al. (2005). Cluster-head election using fuzzy logic for wireless sensor networks. In Communication Networks and Services Research Conference, 2005. Proceedings of the 3rd Annual. IEEE.
44.
Zurück zum Zitat Puneet, A., & Sharma, V. (2013). Cluster head selection in wireless sensor networks under fuzzy environment. ISRN Sensor Networks. doi:10.1155/2013/909086. Puneet, A., & Sharma, V. (2013). Cluster head selection in wireless sensor networks under fuzzy environment. ISRN Sensor Networks. doi:10.​1155/​2013/​909086.
45.
Zurück zum Zitat AbdulAlim, M. A., et al. (2013). A fuzzy based clustering protocol for energy-efficient wireless sensor networks. Advanced Materials Research, 760–762, 685–690.CrossRef AbdulAlim, M. A., et al. (2013). A fuzzy based clustering protocol for energy-efficient wireless sensor networks. Advanced Materials Research, 760–762, 685–690.CrossRef
46.
Zurück zum Zitat Nayak, P., & Devulapalli, A. (2016). A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime. IEEE Sensors Journal, 16(1), 137–144.CrossRef Nayak, P., & Devulapalli, A. (2016). A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime. IEEE Sensors Journal, 16(1), 137–144.CrossRef
47.
Zurück zum Zitat Kim, J., et al. (2008). CHEF: Cluster head election mechanism using fuzzy logic in wireless sensor networks. In 10th International Conference on Advanced Communication Technology, 2008. ICACT 2008 (Vol. 1). IEEE. Kim, J., et al. (2008). CHEF: Cluster head election mechanism using fuzzy logic in wireless sensor networks. In 10th International Conference on Advanced Communication Technology, 2008. ICACT 2008 (Vol. 1). IEEE.
48.
Zurück zum Zitat Heinzelman, W., et al. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef Heinzelman, W., et al. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef
Metadaten
Titel
Two-step fuzzy logic system to achieve energy efficiency and prolonging the lifetime of WSNs
verfasst von
Yahya Kord Tamandani
Mohammad Ubaidullah Bokhari
Qahtan Makki Shallal
Publikationsdatum
09.04.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2017
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1266-3

Weitere Artikel der Ausgabe 6/2017

Wireless Networks 6/2017 Zur Ausgabe

Neuer Inhalt