Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 12/2022

18-05-2022 | Technical Article

Ultrasonic-Assisted Shearing Characteristics of Fe-Based Amorphous Alloy Strips

Authors: Qiusheng Yan, Yaxin Gao, Canlin Du, Zhen Yao, Yiqiang Mo

Published in: Journal of Materials Engineering and Performance | Issue 12/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ultrasonic-assisted scratching and bending tests were conducted on Fe-based amorphous alloy strips (Fe78Si9B13) to reveal (from a theoretical standpoint) the mechanism of ultrasonic vibration designed to improve the plasticity of amorphous strips during processing. The effects of different ultrasonic amplitudes on tool wear and each characteristic morphology of the strip section were investigated by conducting the ultrasonic-assisted shearing (UAS) experiments. The results indicate that the high-frequency stress field induced by ultrasonic vibration inhibits crack expansion by reducing the tensile stress σT within the strip, resulting in better machinability of the Fe-based amorphous alloy strips with low plasticity at room temperature. UAS replaces one-time-shear with multiple micro-shears, which can decrease the rate of tool wear during shearing of Fe-based amorphous alloy strips and improve strip section quality under appropriate amplitude conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Hasani, M. Ansariniya, and A. Seifoddini, Enhancement of Mechanical Properties of a Soft Magnetic Fe-Based Metallic Glass[J], Mater. Sci. Technol., 2019, 35(7), p 865–871.CrossRef S. Hasani, M. Ansariniya, and A. Seifoddini, Enhancement of Mechanical Properties of a Soft Magnetic Fe-Based Metallic Glass[J], Mater. Sci. Technol., 2019, 35(7), p 865–871.CrossRef
2.
go back to reference T. Liu, F. Li, A. Wang et al., High Performance Fe-Based Nanocrystalline Alloys with Excellent Thermal Stability[J], J. Alloy. Compd., 2019, 776, p 606–613.CrossRef T. Liu, F. Li, A. Wang et al., High Performance Fe-Based Nanocrystalline Alloys with Excellent Thermal Stability[J], J. Alloy. Compd., 2019, 776, p 606–613.CrossRef
3.
go back to reference Y. Ogawa, M. Naoe, Y. Yoshizawa et al., Magnetic Properties of high Fe-Based Amorphous Material[J], J. Magn. Magn. Mater., 2006, 304(2), p e675–e677.CrossRef Y. Ogawa, M. Naoe, Y. Yoshizawa et al., Magnetic Properties of high Fe-Based Amorphous Material[J], J. Magn. Magn. Mater., 2006, 304(2), p e675–e677.CrossRef
4.
go back to reference W. Li, Y.Z. Yang, J. Xu et al., Glass Formation and Magnetic Properties of Fe–Hf–Zr–M (M = metalloids Si, P, and B and Metal Al) High-Iron Alloys[J], J. Alloy. Compd., 2017, 710, p 644–649.CrossRef W. Li, Y.Z. Yang, J. Xu et al., Glass Formation and Magnetic Properties of Fe–Hf–Zr–M (M = metalloids Si, P, and B and Metal Al) High-Iron Alloys[J], J. Alloy. Compd., 2017, 710, p 644–649.CrossRef
5.
go back to reference D. Azuma, N. Ito, and M. Ohta, Recent Progress in Fe-Based Amorphous and Nanocrystalline Soft Magnetic Materials[J], J. Magn. Magn. Mater., 2020, 501, p 166373.CrossRef D. Azuma, N. Ito, and M. Ohta, Recent Progress in Fe-Based Amorphous and Nanocrystalline Soft Magnetic Materials[J], J. Magn. Magn. Mater., 2020, 501, p 166373.CrossRef
6.
go back to reference B.A. Sun and W.H. Wang, The Fracture of Bulk Metallic Glasses[J], Prog. Mater Sci., 2015, 74, p 211–307.CrossRef B.A. Sun and W.H. Wang, The Fracture of Bulk Metallic Glasses[J], Prog. Mater Sci., 2015, 74, p 211–307.CrossRef
7.
go back to reference C.Y. Liu, Y.X. Zhang, C.Y. Zhang et al., Thermal, Magnetic and Mechanical Behavior of Large-Sized Fe-Based Amorphous Alloy Ribbons by Twin-Roll Strip Casting[J], Intermetallics, 2021, 132, p 107144.CrossRef C.Y. Liu, Y.X. Zhang, C.Y. Zhang et al., Thermal, Magnetic and Mechanical Behavior of Large-Sized Fe-Based Amorphous Alloy Ribbons by Twin-Roll Strip Casting[J], Intermetallics, 2021, 132, p 107144.CrossRef
8.
go back to reference C. Schuh, T. Hufnagel, and U. Ramamurty, Mechanical Behavior of Amorphous Alloys[J], Acta Mater., 2007, 55(12), p 4067–4109.CrossRef C. Schuh, T. Hufnagel, and U. Ramamurty, Mechanical Behavior of Amorphous Alloys[J], Acta Mater., 2007, 55(12), p 4067–4109.CrossRef
9.
go back to reference L.Q. Shen, P. Luo, Y.C. Hu et al., Shear-Band Affected Zone Revealed by Magnetic Domains in a Ferromagnetic Metallic Glass[J], Nat. Commun., 2018, 9(1), p 1–9.CrossRef L.Q. Shen, P. Luo, Y.C. Hu et al., Shear-Band Affected Zone Revealed by Magnetic Domains in a Ferromagnetic Metallic Glass[J], Nat. Commun., 2018, 9(1), p 1–9.CrossRef
10.
go back to reference Z.F. Zhang, G. He, J. Eckert et al., Fracture Mechanisms in Bulk Metallic Glassy Materials[J], Phys. Rev. Lett., 2003, 91(4), p 45505.CrossRef Z.F. Zhang, G. He, J. Eckert et al., Fracture Mechanisms in Bulk Metallic Glassy Materials[J], Phys. Rev. Lett., 2003, 91(4), p 45505.CrossRef
11.
go back to reference Y. Tan, Y.W. Wang, H.W. Cheng et al., Dynamic Fracture Behavior of Zr63Cu12Ni12Al10Nb3 Metallic Glass Under High Strain-Rate Loading[J], J. Alloy. Compd., 2021, 853, p 157110.CrossRef Y. Tan, Y.W. Wang, H.W. Cheng et al., Dynamic Fracture Behavior of Zr63Cu12Ni12Al10Nb3 Metallic Glass Under High Strain-Rate Loading[J], J. Alloy. Compd., 2021, 853, p 157110.CrossRef
12.
go back to reference J.Y.Y.Z. Xu, Effect of the Substitution of C for Si on Microstructure, Magnetic Properties and Bending Ductility in High Fe Content FeSiBCuPC Alloy Ribbons[J], J. Alloys Compounds, 2017, 727, p 610–615.CrossRef J.Y.Y.Z. Xu, Effect of the Substitution of C for Si on Microstructure, Magnetic Properties and Bending Ductility in High Fe Content FeSiBCuPC Alloy Ribbons[J], J. Alloys Compounds, 2017, 727, p 610–615.CrossRef
13.
go back to reference H. Zheng, L. Zhu, S.S. Jiang et al., Recovering the Bending Ductility of the Stress-Relieved Fe-Based Amorphous Alloy Ribbons by Cryogenic Thermal Cycling[J], J. Alloy. Compd., 2019, 790, p 529–535.CrossRef H. Zheng, L. Zhu, S.S. Jiang et al., Recovering the Bending Ductility of the Stress-Relieved Fe-Based Amorphous Alloy Ribbons by Cryogenic Thermal Cycling[J], J. Alloy. Compd., 2019, 790, p 529–535.CrossRef
14.
go back to reference S.V. Ketov, A.S. Trifonov, Y.P. Ivanov et al., On Cryothermal Cycling as a Method for Inducing Structural Changes in Metallic Glasses[J], NPG Asia Mater., 2018, 10(4), p 137–145.CrossRef S.V. Ketov, A.S. Trifonov, Y.P. Ivanov et al., On Cryothermal Cycling as a Method for Inducing Structural Changes in Metallic Glasses[J], NPG Asia Mater., 2018, 10(4), p 137–145.CrossRef
15.
go back to reference P. Yiu, J.S.C. Jang, S.Y. Chang et al., Plasticity Enhancement of Zr-Based Bulk Metallic Glasses by Direct Current Electropulsing[J], J. Alloy. Compd., 2012, 525, p 68–72.CrossRef P. Yiu, J.S.C. Jang, S.Y. Chang et al., Plasticity Enhancement of Zr-Based Bulk Metallic Glasses by Direct Current Electropulsing[J], J. Alloy. Compd., 2012, 525, p 68–72.CrossRef
16.
go back to reference J. Cui, H. Liu, Y. Ma et al., Flexible Microblanking of Amorphous Alloys Under Laser Dynamic Loading[J], J. Manuf. Process., 2020, 56, p 718–725.CrossRef J. Cui, H. Liu, Y. Ma et al., Flexible Microblanking of Amorphous Alloys Under Laser Dynamic Loading[J], J. Manuf. Process., 2020, 56, p 718–725.CrossRef
17.
go back to reference Y.M. Huang, Y.S. Wu, and J.Y. Huang, The Influence of Ultrasonic Vibration-Assisted Micro-Deep Drawing Process[J], Int. J. Adv. Manuf. Technol., 2014, 71(5–8), p 1455–1461.CrossRef Y.M. Huang, Y.S. Wu, and J.Y. Huang, The Influence of Ultrasonic Vibration-Assisted Micro-Deep Drawing Process[J], Int. J. Adv. Manuf. Technol., 2014, 71(5–8), p 1455–1461.CrossRef
18.
go back to reference F. Sun, B. Wang, F. Luo et al., Shear Punching of Bulk Metallic Glasses Under Low Stress[J], Mater. Des., 2020, 190, p 108595.CrossRef F. Sun, B. Wang, F. Luo et al., Shear Punching of Bulk Metallic Glasses Under Low Stress[J], Mater. Des., 2020, 190, p 108595.CrossRef
19.
go back to reference F. Zheng, R. Kang, Z. Dong et al., A Theoretical and Experimental Investigation on Ultrasonic Assisted Grinding from the Single-Grain Aspect[J], Int. J. Mech. Sci., 2018, 148, p 667–675.CrossRef F. Zheng, R. Kang, Z. Dong et al., A Theoretical and Experimental Investigation on Ultrasonic Assisted Grinding from the Single-Grain Aspect[J], Int. J. Mech. Sci., 2018, 148, p 667–675.CrossRef
20.
go back to reference C. Yuan, Z. Lv, C. Pang et al., Ultrasonic-Assisted Plastic Flow in a Zr-Based Metallic Glass[J], Sci. China Mater., 2021, 64(2), p 448–459.CrossRef C. Yuan, Z. Lv, C. Pang et al., Ultrasonic-Assisted Plastic Flow in a Zr-Based Metallic Glass[J], Sci. China Mater., 2021, 64(2), p 448–459.CrossRef
21.
go back to reference J. Yan, M. Yoshino, T. Kuriagawa et al., On the Ductile Machining of Silicon for Micro Electro-Mechanical Systems (MEMS), Opto-Electronic and Optical Applications[J], Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 2001, 297(1), p 230–234.CrossRef J. Yan, M. Yoshino, T. Kuriagawa et al., On the Ductile Machining of Silicon for Micro Electro-Mechanical Systems (MEMS), Opto-Electronic and Optical Applications[J], Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 2001, 297(1), p 230–234.CrossRef
22.
go back to reference Y.L. Sun, D.W. Zuo, D.S. Li et al., Mechanism of Brittle-Ductile Transition of Single Silicon Wafer Using Nanoindentation Techniques[J], Key Eng. Mater., 2008, 375–376, p 52–56.CrossRef Y.L. Sun, D.W. Zuo, D.S. Li et al., Mechanism of Brittle-Ductile Transition of Single Silicon Wafer Using Nanoindentation Techniques[J], Key Eng. Mater., 2008, 375–376, p 52–56.CrossRef
23.
go back to reference X. Liang, A. He, A. Wang et al., Fe Content Dependence of Magnetic Properties and Bending Ductility of FeSiBPC Amorphous Alloy Ribbons[J], J. Alloy. Compd., 2017, 694, p 1260–1264.CrossRef X. Liang, A. He, A. Wang et al., Fe Content Dependence of Magnetic Properties and Bending Ductility of FeSiBPC Amorphous Alloy Ribbons[J], J. Alloy. Compd., 2017, 694, p 1260–1264.CrossRef
24.
go back to reference A.L. Greer, Y.Q. Cheng, and E. Ma, Shear Bands in Metallic Glasses[J], Mater. Sci. Eng. R. Rep., 2013, 74(4), p 71–132.CrossRef A.L. Greer, Y.Q. Cheng, and E. Ma, Shear Bands in Metallic Glasses[J], Mater. Sci. Eng. R. Rep., 2013, 74(4), p 71–132.CrossRef
25.
go back to reference N. Yan, Z. Li, Y. Xu et al., Shear Localization in Metallic Materials at High Strain Rates[J], Prog. Mater Sci., 2021, 119, p 100755.CrossRef N. Yan, Z. Li, Y. Xu et al., Shear Localization in Metallic Materials at High Strain Rates[J], Prog. Mater Sci., 2021, 119, p 100755.CrossRef
26.
go back to reference A.S. Argon, A theory for the low-temperature plastic deformation of glassy polymers[J], Philos. Mag., 1973, 28(4), p 839–865.CrossRef A.S. Argon, A theory for the low-temperature plastic deformation of glassy polymers[J], Philos. Mag., 1973, 28(4), p 839–865.CrossRef
Metadata
Title
Ultrasonic-Assisted Shearing Characteristics of Fe-Based Amorphous Alloy Strips
Authors
Qiusheng Yan
Yaxin Gao
Canlin Du
Zhen Yao
Yiqiang Mo
Publication date
18-05-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 12/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06952-9

Other articles of this Issue 12/2022

Journal of Materials Engineering and Performance 12/2022 Go to the issue

Premium Partners