Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 10/2020

27-05-2020 | Research Article-Civil Engineering

Unconfined Compressive Strength Testing of Bio-cemented Weak Soils: A Comparative Upscale Laboratory Testing

Authors: K. M. N. Saquib Wani, B. A. Mir

Published in: Arabian Journal for Science and Engineering | Issue 10/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bio-cementation of soils has gained a lot of attention on a global level owing of its ability to improve strength characteristics of weak or marginal soils. In this study, two urease producing bacteria namely Bacillus subtilis (B.S) and Bacillus pasteurii (B.P) along with a cementation media have been used to enhance the unconfined compressive strength (UCS) of dredged soils. Maintaining an optimum temperature of 18–23 °C, treatment was provided using cementation media molarity (CMM) of 0.5 and 1.0 in full contact moulds (FCM) having a diameter of 38, 76 and 114 mm respectively for 8 cycles (6 h each). The extruded samples were further tested for UCS with the test results indicating that as the sample size increased, the UCS value increased irrespective of the bacteria used. Maximum values of UCS for both the bacteria’s were observed at 0.5 CMM. An increase in UCS from 280 kN/m2 in the untreated state to 735 and 820 kN/m2 for B.S and B.P respectively was noticed. The enhancement in UCS is attributed to the formation of calcite crystals which was further supported by elemental and mineral analysis. The main goal of this study was to improve weak soils and to explore the potential of a green ground improvement technique in field applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Prabakar, J.; Dendorkar, N.; Morchhale, R.K.: Influence of fly ash on strength behavior of typical soils. Constr. Build. Mater. 18(4), 263–267 (2004)CrossRef Prabakar, J.; Dendorkar, N.; Morchhale, R.K.: Influence of fly ash on strength behavior of typical soils. Constr. Build. Mater. 18(4), 263–267 (2004)CrossRef
4.
go back to reference Fattah, M.Y.; Al-Saidi, A.A.; Jaber, M.M.: Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix. Geomech. Eng. 8(1), 113–132 (2015)CrossRef Fattah, M.Y.; Al-Saidi, A.A.; Jaber, M.M.: Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix. Geomech. Eng. 8(1), 113–132 (2015)CrossRef
5.
go back to reference Leshchinsky, D.; Han, J.: Geosynthetic reinforced multitiered walls. J. Geotech. Geoenviron. Eng. 130(12), 1225–1235 (2004)CrossRef Leshchinsky, D.; Han, J.: Geosynthetic reinforced multitiered walls. J. Geotech. Geoenviron. Eng. 130(12), 1225–1235 (2004)CrossRef
6.
go back to reference Sherwood, P.: Soil stabilization with cement and lime. Transport Research Laboratory (1993) Sherwood, P.: Soil stabilization with cement and lime. Transport Research Laboratory  (1993)
7.
go back to reference Brooks, R.M.: Soil stabilization with fly ash and rice husk ash. Int. J. Res. Rev. Appl. Sci. 1(3), 209–217 (2009) Brooks, R.M.: Soil stabilization with fly ash and rice husk ash. Int. J. Res. Rev. Appl. Sci. 1(3), 209–217 (2009)
9.
go back to reference Petry, T.M.; Armstrong, J.C.: Stabilization of expansive clay soils. Transp. Res. Rec. 1219, 103–112 (1989) Petry, T.M.; Armstrong, J.C.: Stabilization of expansive clay soils. Transp. Res. Rec. 1219, 103–112 (1989)
10.
go back to reference Puppala, A.; Hoyos, L.; Viyanant, C.; Musenda, C.: Fiber and fly ash stabilization methods to treat soft expansive soils. In: Soft Ground Technology Conference, Noordwijkerhout, the Netherlands, 28 May–2 June 2000, pp. 136–145 (2000). https://doi.org/10.1061/40552(301)11 Puppala, A.; Hoyos, L.; Viyanant, C.; Musenda, C.: Fiber and fly ash stabilization methods to treat soft expansive soils. In: Soft Ground Technology Conference, Noordwijkerhout, the Netherlands, 28 May–2 June 2000, pp. 136–145 (2000). https://​doi.​org/​10.​1061/​40552(301)11
11.
go back to reference Güllü, H.; Canakci, H.; Al Zangana, I.F.: Use of cement based grout with glass powder for deep mixing. Constr. Build. Mater. 137, 12–20 (2017)CrossRef Güllü, H.; Canakci, H.; Al Zangana, I.F.: Use of cement based grout with glass powder for deep mixing. Constr. Build. Mater. 137, 12–20 (2017)CrossRef
12.
13.
go back to reference Dehghanbanadaki, A.; Ahmad, K.; Ali, N.; Khari, M.; Alimohammadi, P.; Latifi, N.: Stabilization of soft soils with deep mixed soil columns—general perspective. Electron. J. Geotech. Eng. 18, 295–306 (2013) Dehghanbanadaki, A.; Ahmad, K.; Ali, N.; Khari, M.; Alimohammadi, P.; Latifi, N.: Stabilization of soft soils with deep mixed soil columns—general perspective. Electron. J. Geotech. Eng. 18, 295–306 (2013)
15.
go back to reference Karim, H.H.; Samueel, Z.W.; Mohammed, M.S.: Sand column stabilized by silica fume embedded in soft soil. Eng. Technol. J. 34(6 Part (A) Engineering), 1047–1057 (2016) Karim, H.H.; Samueel, Z.W.; Mohammed, M.S.: Sand column stabilized by silica fume embedded in soft soil. Eng. Technol. J. 34(6 Part (A) Engineering), 1047–1057 (2016)
16.
go back to reference Richards, T.D. Jr.; Rothbauer, M.J.: Lateral loads on pin piles (micropiles). In: GeoSupport Conference 2004, 29–31 December 2004, Orlando, Florida, United States: Drilled Shafts, Micropiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems, pp. 158–174 (2004). https://doi.org/10.1061/40713(2004)7 Richards, T.D. Jr.; Rothbauer, M.J.: Lateral loads on pin piles (micropiles). In: GeoSupport Conference 2004, 29–31 December 2004, Orlando, Florida, United States: Drilled Shafts, Micropiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems, pp. 158–174 (2004). https://​doi.​org/​10.​1061/​40713(2004)7
17.
go back to reference Sadek, M.; Shahrour, I.: Influence of the head and tip connection on the seismic performance of micropiles. Soil Dyn. Earthq. Eng. 26(5), 461–468 (2006)CrossRef Sadek, M.; Shahrour, I.: Influence of the head and tip connection on the seismic performance of micropiles. Soil Dyn. Earthq. Eng. 26(5), 461–468 (2006)CrossRef
18.
go back to reference Han, J.; Ye, S.L.: A field study on the behavior of a foundation underpinned by micropiles. Can. Geotech. J. 43(1), 30–42 (2006)CrossRef Han, J.; Ye, S.L.: A field study on the behavior of a foundation underpinned by micropiles. Can. Geotech. J. 43(1), 30–42 (2006)CrossRef
19.
go back to reference DeJong, J.T.; Fritzges, M.B.; Nüsslein, K.: Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenviron. Eng. 132(11), 1381–1392 (2006)CrossRef DeJong, J.T.; Fritzges, M.B.; Nüsslein, K.: Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenviron. Eng. 132(11), 1381–1392 (2006)CrossRef
20.
go back to reference Mitchell, J.K.; Santamarina, J.C.: Biological considerations in geotechnical engineering. J. Geotech. Geoenviron. Eng. 131(10), 1222–1233 (2005)CrossRef Mitchell, J.K.; Santamarina, J.C.: Biological considerations in geotechnical engineering. J. Geotech. Geoenviron. Eng. 131(10), 1222–1233 (2005)CrossRef
21.
go back to reference Mitchell, J.K.: In-place treatment of foundation soils. J. Soil Mech. Found. Div. 96(1), 73–110 (1970) Mitchell, J.K.: In-place treatment of foundation soils. J. Soil Mech. Found. Div. 96(1), 73–110 (1970)
22.
go back to reference Canakci, H.; Sidik, W.; Kilic, I.H.: Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils Found. 55(5), 1211–1221 (2015)CrossRef Canakci, H.; Sidik, W.; Kilic, I.H.: Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils Found. 55(5), 1211–1221 (2015)CrossRef
23.
go back to reference Chou, C.W.; Seagren, E.A.; Aydilek, A.H.; Lai, M.: Biocalcification of sand through ureolysis. J. Geotech. Geoenviron. Eng. 137(12), 1179–1189 (2011)CrossRef Chou, C.W.; Seagren, E.A.; Aydilek, A.H.; Lai, M.: Biocalcification of sand through ureolysis. J. Geotech. Geoenviron. Eng. 137(12), 1179–1189 (2011)CrossRef
24.
go back to reference Kim, D.H.; Kim, H.C.; Park, K.H.: Cementation of soft ground using bacteria. Korea Patent, 10-1030761 (2011) Kim, D.H.; Kim, H.C.; Park, K.H.: Cementation of soft ground using bacteria. Korea Patent, 10-1030761 (2011)
25.
go back to reference Montoya, B.M.; DeJong, J.T.; Boulanger, R.W.: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique 63(4), 302–312 (2013)CrossRef Montoya, B.M.; DeJong, J.T.; Boulanger, R.W.: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique 63(4), 302–312 (2013)CrossRef
26.
go back to reference Van Paassen, L.A.; Ghose, R.; van der Linden, T.J.; van der Star, W.R.; van Loosdrecht, M.C.: Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J. Geotech. Geoenviron. Eng. 136(12), 1721–1728 (2010)CrossRef Van Paassen, L.A.; Ghose, R.; van der Linden, T.J.; van der Star, W.R.; van Loosdrecht, M.C.: Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J. Geotech. Geoenviron. Eng. 136(12), 1721–1728 (2010)CrossRef
27.
go back to reference Whiffin, V.S.; Van Paassen, L.A.; Harkes, M.P.: Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J. 24(5), 417–423 (2007)CrossRef Whiffin, V.S.; Van Paassen, L.A.; Harkes, M.P.: Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J. 24(5), 417–423 (2007)CrossRef
28.
go back to reference Burbank, M.; Weaver, T.; Lewis, R.; Williams, T.; Williams, B.; Crawford, R.: Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. J. Geotech. Geoenviron. Eng. 139(6), 928–936 (2013)CrossRef Burbank, M.; Weaver, T.; Lewis, R.; Williams, T.; Williams, B.; Crawford, R.: Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. J. Geotech. Geoenviron. Eng. 139(6), 928–936 (2013)CrossRef
29.
go back to reference Martinez, B.C.; DeJong, J.T.; Ginn, T.R.; Montoya, B.M.; Barkouki, T.H.; Hunt, C.; Major, D.: Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J. Geotech. Geoenviron. Eng. 139(4), 587–598 (2013)CrossRef Martinez, B.C.; DeJong, J.T.; Ginn, T.R.; Montoya, B.M.; Barkouki, T.H.; Hunt, C.; Major, D.: Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J. Geotech. Geoenviron. Eng. 139(4), 587–598 (2013)CrossRef
30.
go back to reference Zhao, Q.; Li, L.; Li, C.; Li, M.; Amini, F.; Zhang, H.: Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. J. Mater. Civ. Eng. 26(12), 04014094 (2014)CrossRef Zhao, Q.; Li, L.; Li, C.; Li, M.; Amini, F.; Zhang, H.: Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. J. Mater. Civ. Eng. 26(12), 04014094 (2014)CrossRef
31.
go back to reference Zhao, Q.; Li, L.; Li, C.; Zhang, H.; Amini, F.: A full contact flexible mold for preparing samples based on microbial-induced calcite precipitation technology. Geotech. Test. J. 37(5), 917–921 (2014)CrossRef Zhao, Q.; Li, L.; Li, C.; Zhang, H.; Amini, F.: A full contact flexible mold for preparing samples based on microbial-induced calcite precipitation technology. Geotech. Test. J. 37(5), 917–921 (2014)CrossRef
32.
go back to reference Han, Z.; Cheng, X.; Ma, Q.: An experimental study on dynamic response for MICP strengthening liquefiable sands. Earthq. Eng. Eng. Vib. 15(4), 673–679 (2016)CrossRef Han, Z.; Cheng, X.; Ma, Q.: An experimental study on dynamic response for MICP strengthening liquefiable sands. Earthq. Eng. Eng. Vib. 15(4), 673–679 (2016)CrossRef
33.
go back to reference Li, M.; Fu, Q.L.; Zhang, Q.; Achal, V.; Kawasaki, S.: Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Sci. Rep. 5, 16128 (2015)CrossRef Li, M.; Fu, Q.L.; Zhang, Q.; Achal, V.; Kawasaki, S.: Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Sci. Rep. 5, 16128 (2015)CrossRef
34.
go back to reference DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C.: Bio-mediated soil improvement. Ecol. Eng. 36(2), 197–210 (2010)CrossRef DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C.: Bio-mediated soil improvement. Ecol. Eng. 36(2), 197–210 (2010)CrossRef
35.
go back to reference Cheshomi, A.; Mansouri, S.; Amoozegar, M.A.: Improving the shear strength of quartz sand using the microbial method. Geomicrobiol J. 35(9), 749–756 (2018)CrossRef Cheshomi, A.; Mansouri, S.; Amoozegar, M.A.: Improving the shear strength of quartz sand using the microbial method. Geomicrobiol J. 35(9), 749–756 (2018)CrossRef
37.
go back to reference Fujita, Y.; Taylor, J.L.; Wendt, L.M.; Reed, D.W.; Smith, R.W.: Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment. Environ. Sci. Technol. 44(19), 7652–7658 (2010)CrossRef Fujita, Y.; Taylor, J.L.; Wendt, L.M.; Reed, D.W.; Smith, R.W.: Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment. Environ. Sci. Technol. 44(19), 7652–7658 (2010)CrossRef
38.
go back to reference Mwandira, W.; Nakashima, K.; Kawasaki, S.: Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecol. Eng. 109, 57–64 (2017)CrossRef Mwandira, W.; Nakashima, K.; Kawasaki, S.: Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecol. Eng. 109, 57–64 (2017)CrossRef
39.
go back to reference Liu, L.; Liu, H.; Stuedlein, A.W.; Evans, T.M.; Xiao, Y.: Strength, stiffness, and microstructure characteristics of biocemented calcareous sand. Can. Geotech. J. 56(10), 1502–1513 (2019)CrossRef Liu, L.; Liu, H.; Stuedlein, A.W.; Evans, T.M.; Xiao, Y.: Strength, stiffness, and microstructure characteristics of biocemented calcareous sand. Can. Geotech. J. 56(10), 1502–1513 (2019)CrossRef
40.
go back to reference Xiao, P.; Liu, H.; Xiao, Y.; Stuedlein, A.W.; Evans, T.M.: Liquefaction resistance of bio-cemented calcareous sand. Soil Dyn. Earthq. Eng. 107, 9–19 (2018)CrossRef Xiao, P.; Liu, H.; Xiao, Y.; Stuedlein, A.W.; Evans, T.M.: Liquefaction resistance of bio-cemented calcareous sand. Soil Dyn. Earthq. Eng. 107, 9–19 (2018)CrossRef
41.
go back to reference Liang, J.; Guo, Z.; Deng, L.; Liu, Y.: Mature fine tailings consolidation through microbial induced calcium carbonate precipitation. Can. J. Civ. Eng. 42(11), 975–978 (2015)CrossRef Liang, J.; Guo, Z.; Deng, L.; Liu, Y.: Mature fine tailings consolidation through microbial induced calcium carbonate precipitation. Can. J. Civ. Eng. 42(11), 975–978 (2015)CrossRef
42.
go back to reference Salifu, E.; MacLachlan, E.; Iyer, K.R.; Knapp, C.W.; Tarantino, A.: Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation. Eng. Geol. 201, 96–105 (2016)CrossRef Salifu, E.; MacLachlan, E.; Iyer, K.R.; Knapp, C.W.; Tarantino, A.: Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation. Eng. Geol. 201, 96–105 (2016)CrossRef
43.
go back to reference Jiang, N.J.; Tang, C.S.; Yin, L.Y.; Xie, Y.H.; Shi, B.: Applicability of microbial calcification method for sandy-slope surface erosion control. J. Mater. Civ. Eng. 31(11), 04019250 (2019)CrossRef Jiang, N.J.; Tang, C.S.; Yin, L.Y.; Xie, Y.H.; Shi, B.: Applicability of microbial calcification method for sandy-slope surface erosion control. J. Mater. Civ. Eng. 31(11), 04019250 (2019)CrossRef
44.
go back to reference Van Paassen, L.A.: Microbes turning sand into sandstone, using waste as cement. In: 4th International Young Geotechnical Engineers Conference, pp. 135–138 (2009) Van Paassen, L.A.: Microbes turning sand into sandstone, using waste as cement. In: 4th International Young Geotechnical Engineers Conference, pp. 135–138 (2009)
45.
go back to reference Mortensen, B.M.; Haber, M.J.; DeJong, J.T.; Caslake, L.F.; Nelson, D.C.: Effects of environmental factors on microbial induced calcium carbonate precipitation. J. Appl. Microbiol. 111(2), 338–349 (2011)CrossRef Mortensen, B.M.; Haber, M.J.; DeJong, J.T.; Caslake, L.F.; Nelson, D.C.: Effects of environmental factors on microbial induced calcium carbonate precipitation. J. Appl. Microbiol. 111(2), 338–349 (2011)CrossRef
47.
go back to reference Wani, K.S.; Mir, B.A.: Effect of biological cementation on the mechanical behaviour of dredged soils with emphasis on micro-structural analysis. Int. J. Geosynth. Ground Eng. 5(4), 32 (2019)CrossRef Wani, K.S.; Mir, B.A.: Effect of biological cementation on the mechanical behaviour of dredged soils with emphasis on micro-structural analysis. Int. J. Geosynth. Ground Eng. 5(4), 32 (2019)CrossRef
48.
go back to reference Xiao, Y.; Wang, Y.; Desai, C.S.; Jiang, X.; Liu, H.: Strength and deformation responses of biocemented sands using a temperature-controlled method. Int. J. Geomech. 19(11), 04019120 (2019)CrossRef Xiao, Y.; Wang, Y.; Desai, C.S.; Jiang, X.; Liu, H.: Strength and deformation responses of biocemented sands using a temperature-controlled method. Int. J. Geomech. 19(11), 04019120 (2019)CrossRef
49.
go back to reference Xiao, P.; Liu, H.; Stuedlein, A.W.; Evans, T.M.; Xiao, Y.: Effect of relative density and biocementation on cyclic response of calcareous sand. Can. Geotech. J. 56(12), 1849–1862 (2019)CrossRef Xiao, P.; Liu, H.; Stuedlein, A.W.; Evans, T.M.; Xiao, Y.: Effect of relative density and biocementation on cyclic response of calcareous sand. Can. Geotech. J. 56(12), 1849–1862 (2019)CrossRef
50.
go back to reference Bergado, D.T.; Anderson, L.R.; Miura, N.; Balasubramaniam, A.S.: Soft ground improvement in lowland and other environments. ASCE, New York (1996) Bergado, D.T.; Anderson, L.R.; Miura, N.; Balasubramaniam, A.S.: Soft ground improvement in lowland and other environments. ASCE, New York (1996)
51.
go back to reference Liu, L.; Liu, H.; Xiao, Y.; Chu, J.; Xiao, P.; Wang, Y.: Biocementation of calcareous sand using soluble calcium derived from calcareous sand. Bull. Eng. Geol. Env. 77(4), 1781–1791 (2018)CrossRef Liu, L.; Liu, H.; Xiao, Y.; Chu, J.; Xiao, P.; Wang, Y.: Biocementation of calcareous sand using soluble calcium derived from calcareous sand. Bull. Eng. Geol. Env. 77(4), 1781–1791 (2018)CrossRef
52.
go back to reference McNamara, K.: Stromatolites. Western Australian Museum (2009) McNamara, K.: Stromatolites. Western Australian Museum (2009)
53.
go back to reference Wacey, D.; Urosevic, L.; Saunders, M.; George, A.D.: Mineralisation of filamentous cyanobacteria in Lake Thetis stromatolites. West. Aust. Geobiol. 16(2), 203–215 (2018)CrossRef Wacey, D.; Urosevic, L.; Saunders, M.; George, A.D.: Mineralisation of filamentous cyanobacteria in Lake Thetis stromatolites. West. Aust. Geobiol. 16(2), 203–215 (2018)CrossRef
54.
go back to reference Webster, T.: VII. On the fresh-water formations in the isle of wight, with some observations on the strata over the Chalk in the South-east part of England. Trans. Geol. Soc. Lond. 1(1), 161–254 (1814)CrossRef Webster, T.: VII. On the fresh-water formations in the isle of wight, with some observations on the strata over the Chalk in the South-east part of England. Trans. Geol. Soc. Lond. 1(1), 161–254 (1814)CrossRef
55.
go back to reference Ng, W.S.; Lee, M.L.; Hii, S.L.: An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Acad. Sci. Eng. Technol. 62(2), 723–729 (2012) Ng, W.S.; Lee, M.L.; Hii, S.L.: An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Acad. Sci. Eng. Technol. 62(2), 723–729 (2012)
56.
go back to reference Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S.: Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31(11), 1563–1571 (1999)CrossRef Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S.: Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31(11), 1563–1571 (1999)CrossRef
57.
go back to reference Arunachalam, K.D.; Sathyanarayanan, K.S.; Darshan, B.S.; Raja, R.B.: Studies on the characterisation of Biosealant properties of Bacillus sphaericus. Int. J. Eng. Sci. Technol. 2(3), 270–277 (2010) Arunachalam, K.D.; Sathyanarayanan, K.S.; Darshan, B.S.; Raja, R.B.: Studies on the characterisation of Biosealant properties of Bacillus sphaericus. Int. J. Eng. Sci. Technol. 2(3), 270–277 (2010)
58.
go back to reference Li, M.; Li, L.; Ogbonnaya, U.; Wen, K.; Tian, A.; Amini, F.: Influence of fiber addition on mechanical properties of MICP-treated sand. J. Mater. Civ. Eng. 28(4), 04015166 (2016)CrossRef Li, M.; Li, L.; Ogbonnaya, U.; Wen, K.; Tian, A.; Amini, F.: Influence of fiber addition on mechanical properties of MICP-treated sand. J. Mater. Civ. Eng. 28(4), 04015166 (2016)CrossRef
59.
go back to reference Ramachandran, S.K.; Ramakrishnan, V.; Bang, S.S.: Remediation of concrete using micro-organisms. ACI Mater. J. Am. Concr. Inst. 98(1), 3–9 (2001) Ramachandran, S.K.; Ramakrishnan, V.; Bang, S.S.: Remediation of concrete using micro-organisms. ACI Mater. J. Am. Concr. Inst. 98(1), 3–9 (2001)
60.
go back to reference Cheng, L.; Shahin, M.A.; Cord-Ruwisch, R.; Addis, M.; Hartanto, T.; Elms, C.: Soil stabilisation by microbial-induced calcite precipitation (micp): investigation into some physical and environmental aspects. In: 7th International Congress on Environmental Geotechnics: iceg2014, p. 1105. Engineers Australia (2014) Cheng, L.; Shahin, M.A.; Cord-Ruwisch, R.; Addis, M.; Hartanto, T.; Elms, C.: Soil stabilisation by microbial-induced calcite precipitation (micp): investigation into some physical and environmental aspects. In: 7th International Congress on Environmental Geotechnics: iceg2014, p. 1105. Engineers Australia (2014)
68.
go back to reference ASTM D1883-16: Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International, West Conshohocken (2016) ASTM D1883-16: Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International, West Conshohocken (2016)
69.
go back to reference Shahrokhi-Shahraki, R.; Zomorodian, S.M.A.; Niazi, A.; O’Kelly, B.C.: Improving sand with microbial-induced carbonate precipitation. Proc. Inst. Civ. Eng. Ground Improv. 168(3), 217–230 (2015)CrossRef Shahrokhi-Shahraki, R.; Zomorodian, S.M.A.; Niazi, A.; O’Kelly, B.C.: Improving sand with microbial-induced carbonate precipitation. Proc. Inst. Civ. Eng. Ground Improv. 168(3), 217–230 (2015)CrossRef
70.
go back to reference Umar, M.; Kassim, K.A.; Chiet, K.T.P.: Biological process of soil improvement in civil engineering: a review. J. Rock Mech. Geotech. Eng. 8(5), 767–774 (2016)CrossRef Umar, M.; Kassim, K.A.; Chiet, K.T.P.: Biological process of soil improvement in civil engineering: a review. J. Rock Mech. Geotech. Eng. 8(5), 767–774 (2016)CrossRef
71.
go back to reference Baskar, S.; Baskar, R.; Mauclaire, L.; McKenzie, J.A.: Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr. Sci. 90(1), 58–64 (2006). https://www.jstor.org/stable/24089018 Baskar, S.; Baskar, R.; Mauclaire, L.; McKenzie, J.A.: Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr. Sci. 90(1), 58–64 (2006). https://​www.​jstor.​org/​stable/​24089018
74.
go back to reference Kang, C.H.; Kwon, Y.J.; So, J.S.: Soil bioconsolidation through microbially induced calcite precipitation by Lysinibacillus sphaericus WJ-8. Geomicrobiol J. 33(6), 473–478 (2016)CrossRef Kang, C.H.; Kwon, Y.J.; So, J.S.: Soil bioconsolidation through microbially induced calcite precipitation by Lysinibacillus sphaericus WJ-8. Geomicrobiol J. 33(6), 473–478 (2016)CrossRef
75.
go back to reference Li, M.; Fang, C.; Kawasaki, S.; Achal, V.: Fly ash incorporated with biocement to improve strength of expansive soil. Sci. Rep. 8(1), 1–7 (2018)CrossRef Li, M.; Fang, C.; Kawasaki, S.; Achal, V.: Fly ash incorporated with biocement to improve strength of expansive soil. Sci. Rep. 8(1), 1–7 (2018)CrossRef
Metadata
Title
Unconfined Compressive Strength Testing of Bio-cemented Weak Soils: A Comparative Upscale Laboratory Testing
Authors
K. M. N. Saquib Wani
B. A. Mir
Publication date
27-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 10/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04647-8

Other articles of this Issue 10/2020

Arabian Journal for Science and Engineering 10/2020 Go to the issue

Premium Partners