Skip to main content
Top
Published in: Artificial Life and Robotics 2/2022

11-03-2022 | Invited Article

Understanding of superorganisms: collective behavior, differentiation and social organization

Authors: Toru Miura, Kohei Oguchi, Haruka Yamaguchi, Mayuko Nakamura, Daisuke Sato, Kenta Kobayashi, Nobuyuki Kutsukake, Kyoko Miura, Yoshinobu Hayashi, Masaru Hojo, Kiyoto Maekawa, Shuji Shigenobu, Takeshi Kano, Akio Ishiguro

Published in: Artificial Life and Robotics | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Most animal species spend their lives in a form based on the unit of “an individual” that is a sophisticated multicellular closed unit with various biological functions. Although the system of an animal individual seems to be perfect, individuals belonging to some animal lineages constitute higher-dimensional units, i.e., colonies, that consist of multiple individuals of the same species, performing divisions of labors among them. Those animals include eusocial insects and colonial animals, and their colonies are also known as “superorganisms”, since a colony behave as a single individual. Recent molecular and genomic/transcriptomic studies have been revealing the regulatory mechanisms underlying the integrated systems of superorganisms although many aspects have yet to be elucidated. In this article, life patterns of superorganisms in some animals are introduced, together with recent research advances on the mechanisms. Furthermore, animal species that show distinctive developmental systems such as abnormal asexual reproduction are also focused, since those developmental patterns are deviated from the concept of normal animal “individuality”. Furthermore, synthetic approaches based on robotics and mathematical modeling, focusing on novel robotic systems that can self-organize various non-trivial macroscopic functionalities as observed in superorganisms, are also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Szathmary E, Maynard Smith J (1995) The major evolutionary transitions. Nature 374:227–232CrossRef Szathmary E, Maynard Smith J (1995) The major evolutionary transitions. Nature 374:227–232CrossRef
3.
go back to reference Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251CrossRef Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251CrossRef
4.
go back to reference Maynard Smith J, Szathmary E (1997) The major transitions in evolution. Oxford University Press, OxfordCrossRef Maynard Smith J, Szathmary E (1997) The major transitions in evolution. Oxford University Press, OxfordCrossRef
5.
go back to reference Wilson EO (1971) The insect societies. Belknap Press of Harvard University Press, Cambridge Wilson EO (1971) The insect societies. Belknap Press of Harvard University Press, Cambridge
6.
go back to reference Boomsma JJ, Gawne R (2018) Superorganismality and caste differentiation as points of no return: how the major evolutionary transitions were lost in translation. Biol Rev 93:28–54CrossRef Boomsma JJ, Gawne R (2018) Superorganismality and caste differentiation as points of no return: how the major evolutionary transitions were lost in translation. Biol Rev 93:28–54CrossRef
7.
go back to reference Queller DC (2016) The theory of inclusive fitness. Quart Rev Biol 91:343–347CrossRef Queller DC (2016) The theory of inclusive fitness. Quart Rev Biol 91:343–347CrossRef
8.
9.
go back to reference Hölldobler B, Wilson EO (2009) The superorganism: the beauty, elegance, and strangeness of insect societies. WW Norton & Company, New York Hölldobler B, Wilson EO (2009) The superorganism: the beauty, elegance, and strangeness of insect societies. WW Norton & Company, New York
10.
go back to reference Gordon J, Knowlton N, Relman DA, Rohwer F, Youle M (2013) Superorganisms and holobionts. Microbe 8:152–153 Gordon J, Knowlton N, Relman DA, Rohwer F, Youle M (2013) Superorganisms and holobionts. Microbe 8:152–153
11.
go back to reference Satz H (2020) The rules of the flock: self-organization and swarm structures in animal societies. Oxford University Press, OxfordCrossRef Satz H (2020) The rules of the flock: self-organization and swarm structures in animal societies. Oxford University Press, OxfordCrossRef
12.
go back to reference Saito D, Maruyama N, Hashimoto Y, Ikegami T (2020) Visualization of dynamic structure in flocking behavior. Artif Life Robot 25:544–551CrossRef Saito D, Maruyama N, Hashimoto Y, Ikegami T (2020) Visualization of dynamic structure in flocking behavior. Artif Life Robot 25:544–551CrossRef
13.
go back to reference Loreau M (2020) The ecosystem: superorganism, or collection of individuals? In: Dobson A, Tilman D, Holt RD (eds) Unsolved problems in ecology. Princeton University Press, Princeton, pp 218–224CrossRef Loreau M (2020) The ecosystem: superorganism, or collection of individuals? In: Dobson A, Tilman D, Holt RD (eds) Unsolved problems in ecology. Princeton University Press, Princeton, pp 218–224CrossRef
14.
go back to reference Wilson DS, Sober E (1989) Reviving the superorganism. J Theor Biol 136(3):337–356CrossRef Wilson DS, Sober E (1989) Reviving the superorganism. J Theor Biol 136(3):337–356CrossRef
15.
go back to reference Miura T, Maekawa K (2020) The making of the defensive caste: Physiology, development, and evolution of the soldier differentiation in termites. Evol Dev 22:e12335CrossRef Miura T, Maekawa K (2020) The making of the defensive caste: Physiology, development, and evolution of the soldier differentiation in termites. Evol Dev 22:e12335CrossRef
16.
go back to reference Wilson EO (1975) Sociobiology: the new synthesis. Harvard University Press, Cambridge Wilson EO (1975) Sociobiology: the new synthesis. Harvard University Press, Cambridge
17.
go back to reference Michener CD (1969) Comparative social behavior of bees. Annu Rev Entomol 14:299–342CrossRef Michener CD (1969) Comparative social behavior of bees. Annu Rev Entomol 14:299–342CrossRef
18.
go back to reference Crespi BJ, Yanega D (1995) The definition of eusociality. Behav Ecol 6:109–115CrossRef Crespi BJ, Yanega D (1995) The definition of eusociality. Behav Ecol 6:109–115CrossRef
19.
20.
go back to reference Jarvis J (1981) Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science 212:571–573CrossRef Jarvis J (1981) Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science 212:571–573CrossRef
21.
go back to reference Hamilton WD (1964) The genetical evolution of social behaviour I and II. J Theor Biol 7(1–16):17–52CrossRef Hamilton WD (1964) The genetical evolution of social behaviour I and II. J Theor Biol 7(1–16):17–52CrossRef
22.
go back to reference Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15CrossRef Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15CrossRef
23.
go back to reference Robinson GE, Grozinger CM, Whitfield CW (2005) Sociogenomics: social life in molecular terms. Nat Rev Genet 6:257–270CrossRef Robinson GE, Grozinger CM, Whitfield CW (2005) Sociogenomics: social life in molecular terms. Nat Rev Genet 6:257–270CrossRef
24.
go back to reference Miura T, Kamikouchi A, Sawata M, Takeuchi H, Natori S, Kubo T, Matsumoto T (1999) Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera: Termopsidae). Proc Natl Acad Sci USA 96:13874–13879CrossRef Miura T, Kamikouchi A, Sawata M, Takeuchi H, Natori S, Kubo T, Matsumoto T (1999) Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera: Termopsidae). Proc Natl Acad Sci USA 96:13874–13879CrossRef
25.
go back to reference Toga K, Hojo M, Miura T, Maekawa K (2012) Expression and function of a limb-patterning gene Distal-less in the soldier-specific morphogenesis in the nasute termite Nasutitermes takasagoensis. Evol Dev 14:286–295CrossRef Toga K, Hojo M, Miura T, Maekawa K (2012) Expression and function of a limb-patterning gene Distal-less in the soldier-specific morphogenesis in the nasute termite Nasutitermes takasagoensis. Evol Dev 14:286–295CrossRef
26.
go back to reference Sugime Y, Oguchi K, Gotoh H, Hayashi Y, Matsunami M, Shigenobu S, Koshikawa S, Miura T (2019) Termite soldier mandibles are elongated by dachshund under hormonal and Hox gene controls. Development 146:dev171942CrossRef Sugime Y, Oguchi K, Gotoh H, Hayashi Y, Matsunami M, Shigenobu S, Koshikawa S, Miura T (2019) Termite soldier mandibles are elongated by dachshund under hormonal and Hox gene controls. Development 146:dev171942CrossRef
27.
go back to reference Miura T (2005) Developmental regulation of caste-specific characters in social-insect polyphenism. Evol Dev 7:122–129CrossRef Miura T (2005) Developmental regulation of caste-specific characters in social-insect polyphenism. Evol Dev 7:122–129CrossRef
28.
go back to reference Miura T (2019) Juvenile hormone as a physiological regulator mediating phenotypic plasticity in pancrustaceans. Dev Growth Diffr 61:85–96CrossRef Miura T (2019) Juvenile hormone as a physiological regulator mediating phenotypic plasticity in pancrustaceans. Dev Growth Diffr 61:85–96CrossRef
29.
go back to reference Nijhout HF (2003) Development and evolution of adaptive polyphenisms. Evol Dev 5:9–18CrossRef Nijhout HF (2003) Development and evolution of adaptive polyphenisms. Evol Dev 5:9–18CrossRef
30.
go back to reference Noirot C (1969) Formation of castes in the higher termites. In: Krishna K, Weesner FM (eds) Biology of termites I. Academic Press, Cambridge, pp 311–350CrossRef Noirot C (1969) Formation of castes in the higher termites. In: Krishna K, Weesner FM (eds) Biology of termites I. Academic Press, Cambridge, pp 311–350CrossRef
31.
go back to reference Weesner FM (1969) External anatomy. In: Krishna K, Weesner FM (eds) Biology of termites I. Academic Press, Cambridge, pp 19–48CrossRef Weesner FM (1969) External anatomy. In: Krishna K, Weesner FM (eds) Biology of termites I. Academic Press, Cambridge, pp 19–48CrossRef
32.
go back to reference Watanabe D, Gotoh H, Miura T, Maekawa K (2011) Soldier presence suppresses differentiaiton through a rapid decrease of JH in the termite Reticulitermes speratus. J Insect Physiol 57:791–795CrossRef Watanabe D, Gotoh H, Miura T, Maekawa K (2011) Soldier presence suppresses differentiaiton through a rapid decrease of JH in the termite Reticulitermes speratus. J Insect Physiol 57:791–795CrossRef
33.
go back to reference Maekawa K, Nakamura S, Watanabe D (2012) Termite soldier differentiation in incipient colonies is related to the parental proctodeal trophallactic behavior. Zool Sci 29:213–217CrossRef Maekawa K, Nakamura S, Watanabe D (2012) Termite soldier differentiation in incipient colonies is related to the parental proctodeal trophallactic behavior. Zool Sci 29:213–217CrossRef
34.
go back to reference Lüscher M (1961) Social control of polymorphism in termites. In: Kennedy JS (ed) Insect polymorphism. Royal Entomological Society of London, London, pp 57–67 Lüscher M (1961) Social control of polymorphism in termites. In: Kennedy JS (ed) Insect polymorphism. Royal Entomological Society of London, London, pp 57–67
35.
go back to reference Shimoji H, Oguchi K, Hayashi Y, Hojo MK, Miura T (2017) Regulation of neotenic differentiation through direct physical contact in the damp-wood termite Hodotermopsis sjostedti. Insectes Soc 64:393–401CrossRef Shimoji H, Oguchi K, Hayashi Y, Hojo MK, Miura T (2017) Regulation of neotenic differentiation through direct physical contact in the damp-wood termite Hodotermopsis sjostedti. Insectes Soc 64:393–401CrossRef
36.
go back to reference Sun Q, Haynes KF, Hampton JD, Zhou X (2017) Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci Nat 104:79CrossRef Sun Q, Haynes KF, Hampton JD, Zhou X (2017) Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci Nat 104:79CrossRef
37.
go back to reference Watanabe D, Gotoh H, Miura T, Maekawa K (2014) Social interactions affecting caste development through physiological actions in termites. Front Physiol 5:127CrossRef Watanabe D, Gotoh H, Miura T, Maekawa K (2014) Social interactions affecting caste development through physiological actions in termites. Front Physiol 5:127CrossRef
38.
go back to reference Nijhout HF, Wheeler DE (1982) Juvenile hormone and the physiological basis of insect polymorphisms. Quart Rev Biol 57:109–133CrossRef Nijhout HF, Wheeler DE (1982) Juvenile hormone and the physiological basis of insect polymorphisms. Quart Rev Biol 57:109–133CrossRef
39.
go back to reference Oguchi K, Maekawa K, Miura T (2021) Regulatory mechanisms underlying the differentiation of neotenic reproductives in termites: Partial release from arrested development. Front Ecol Evol 9:635552CrossRef Oguchi K, Maekawa K, Miura T (2021) Regulatory mechanisms underlying the differentiation of neotenic reproductives in termites: Partial release from arrested development. Front Ecol Evol 9:635552CrossRef
40.
go back to reference Weil T, Rehli M, Korb J (2007) Molecular basis for the reproductive division of labour in a lower termite. BMC Genom 8:1–9CrossRef Weil T, Rehli M, Korb J (2007) Molecular basis for the reproductive division of labour in a lower termite. BMC Genom 8:1–9CrossRef
41.
go back to reference Korb J, Weil T, Hoffmann K, Foster KR, Rehli M (2009) A gene necessary for reproductive suppression in termites. Science 324:758–758CrossRef Korb J, Weil T, Hoffmann K, Foster KR, Rehli M (2009) A gene necessary for reproductive suppression in termites. Science 324:758–758CrossRef
42.
go back to reference Lin S, Werle J, Korb J (2021) Transcriptomic analyses of the termite, Cryptotermes secundus, reveal a gene network underlying a long lifespan and high fecundity. Commun Biol 4:1–12CrossRef Lin S, Werle J, Korb J (2021) Transcriptomic analyses of the termite, Cryptotermes secundus, reveal a gene network underlying a long lifespan and high fecundity. Commun Biol 4:1–12CrossRef
43.
go back to reference Robinson GE (1999) Integrative animal behaviour and sociogenomics. Trends Ecol Evol 14:202–205CrossRef Robinson GE (1999) Integrative animal behaviour and sociogenomics. Trends Ecol Evol 14:202–205CrossRef
44.
go back to reference Ferreira PG, Patalano S, Chauhan R, Ffrench-Constant R, Gabaldón T, Guigó R, Sumner S (2013) Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biol 14:R20CrossRef Ferreira PG, Patalano S, Chauhan R, Ffrench-Constant R, Gabaldón T, Guigó R, Sumner S (2013) Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biol 14:R20CrossRef
45.
go back to reference Standage DS, Berens AJ, Glastad KM, Severin AJ, Brendel VP, Toth AL (2016) Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Mol Ecol 25:1769–1784CrossRef Standage DS, Berens AJ, Glastad KM, Severin AJ, Brendel VP, Toth AL (2016) Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Mol Ecol 25:1769–1784CrossRef
46.
go back to reference Berens AJ, Hunt JH, Toth AL (2018) Comparative transcriptomics of convergent evolution: different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects. Mol Biol Evol 32:690–703CrossRef Berens AJ, Hunt JH, Toth AL (2018) Comparative transcriptomics of convergent evolution: different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects. Mol Biol Evol 32:690–703CrossRef
47.
go back to reference Miura T, Scharf ME (2011) Molecular basis underlying caste differentiation in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 211–253 Miura T, Scharf ME (2011) Molecular basis underlying caste differentiation in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 211–253
48.
go back to reference Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, Chen Z, Childers CP, Glastad KM, Gokhale K, Gowin J, Gronenberg W, Hermansen RA, Hu H, Hunt BG, Huylmans AK, Khalil SMS, Mitchell RD, Munoz-Torres MC, Mustard J, Pan H, Reese JT, Scharf ME, Sun F, Vogel H, Xiao J, Yang W, Yang Z, Yang Z, Zhou J, Zhu J, Brent CS, Elsik CG, Goodisman MAD, Liberles DA, Roe RM, Vargo EL, Vilcinskas A, Wang J, Bornberg-Bauer E, Korb J, Zhang G, Liebig J (2014) Molecular traces of alternative social organization in a termite genome. Nat Commun 5:1–12CrossRef Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, Chen Z, Childers CP, Glastad KM, Gokhale K, Gowin J, Gronenberg W, Hermansen RA, Hu H, Hunt BG, Huylmans AK, Khalil SMS, Mitchell RD, Munoz-Torres MC, Mustard J, Pan H, Reese JT, Scharf ME, Sun F, Vogel H, Xiao J, Yang W, Yang Z, Yang Z, Zhou J, Zhu J, Brent CS, Elsik CG, Goodisman MAD, Liberles DA, Roe RM, Vargo EL, Vilcinskas A, Wang J, Bornberg-Bauer E, Korb J, Zhang G, Liebig J (2014) Molecular traces of alternative social organization in a termite genome. Nat Commun 5:1–12CrossRef
49.
go back to reference Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, Childers CP, Dinh H, Doddapaneni H, Dugan S, Gowin J, Greiner C, Han Y, Hu H, Hughes DST, Huylmans AK, Kemena C, Kremer LPM, Lee SL, Lopez-Ezquerra A, Mallet L, Monroy-Kuhn JM, Moser A, Murali SC, Muzny DM, Otani S, Piulachs MD, Poelchau M, Qu J, Schaub F, Wada-Katsumata A, Worley KC, Xie Q, Ylla G, Poulsen M, Gibbs RA, Schal C, Richards S, Belles X, Korb J, Bornberg-Bauer E (2018) Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat Ecol Evol 2:557–566CrossRef Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, Childers CP, Dinh H, Doddapaneni H, Dugan S, Gowin J, Greiner C, Han Y, Hu H, Hughes DST, Huylmans AK, Kemena C, Kremer LPM, Lee SL, Lopez-Ezquerra A, Mallet L, Monroy-Kuhn JM, Moser A, Murali SC, Muzny DM, Otani S, Piulachs MD, Poelchau M, Qu J, Schaub F, Wada-Katsumata A, Worley KC, Xie Q, Ylla G, Poulsen M, Gibbs RA, Schal C, Richards S, Belles X, Korb J, Bornberg-Bauer E (2018) Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat Ecol Evol 2:557–566CrossRef
50.
go back to reference Shigenobu S, Hayashi Y, Watanabe D, Tokuda G, Hojo MY, Toga K, Saiki R, Yaguchi H, Masuoka Y, Suzuki Y, Suzuki S, Kimura M, Matsunami M, Sugime Y, Oguchi K, Niimi T, Gotoh H, Mojo MK, Miyazaki S, Toyoda A, Miura T, Maekawa K (2022) Genomic and transcriptomic analyses of the subterranean termite Reticulitermes speratus: gene duplication facilitates social evolution. Proc Natl Acad Sci USA 119:e2110361119CrossRef Shigenobu S, Hayashi Y, Watanabe D, Tokuda G, Hojo MY, Toga K, Saiki R, Yaguchi H, Masuoka Y, Suzuki Y, Suzuki S, Kimura M, Matsunami M, Sugime Y, Oguchi K, Niimi T, Gotoh H, Mojo MK, Miyazaki S, Toyoda A, Miura T, Maekawa K (2022) Genomic and transcriptomic analyses of the subterranean termite Reticulitermes speratus: gene duplication facilitates social evolution. Proc Natl Acad Sci USA 119:e2110361119CrossRef
51.
go back to reference Seyfarth RM, Cheney DL (2003) Signalers and receivers in animal communication. Ann Rev Psychol 54:145–173CrossRef Seyfarth RM, Cheney DL (2003) Signalers and receivers in animal communication. Ann Rev Psychol 54:145–173CrossRef
52.
go back to reference von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge
53.
go back to reference Leonhardt SD, Menzel F, Nehring V, Schmitt T (2016) Ecology and evolution of communication in social insects. Cell 164:1277–1287CrossRef Leonhardt SD, Menzel F, Nehring V, Schmitt T (2016) Ecology and evolution of communication in social insects. Cell 164:1277–1287CrossRef
54.
go back to reference LeBoeuf AC, Benton R, Keller L (2013) The molecular basis of social behavior: models, methods and advances. Curr Opin Neurobiol 23:3–10CrossRef LeBoeuf AC, Benton R, Keller L (2013) The molecular basis of social behavior: models, methods and advances. Curr Opin Neurobiol 23:3–10CrossRef
55.
go back to reference Hojo MK, Ihii K, Sakura M, Yamaguchi K, Shigenobu S, Ozaki M (2015) Antennal RNA-sequencing analysis reveals evolutionary aspects of chemosensory proteins in the carpenter ant, Camponotus japonicus. Sci Rep 5:13541CrossRef Hojo MK, Ihii K, Sakura M, Yamaguchi K, Shigenobu S, Ozaki M (2015) Antennal RNA-sequencing analysis reveals evolutionary aspects of chemosensory proteins in the carpenter ant, Camponotus japonicus. Sci Rep 5:13541CrossRef
56.
go back to reference d’Ettorre P, Deisig N, Sandoz J-C (2017) Decoding ants’ olfactory system sheds light on the evolution of social communication. Proc Natl Acad Sci USA 114:8911–8913CrossRef d’Ettorre P, Deisig N, Sandoz J-C (2017) Decoding ants’ olfactory system sheds light on the evolution of social communication. Proc Natl Acad Sci USA 114:8911–8913CrossRef
57.
go back to reference McKenzie SK, Kronauer DJC (2018) The genomic architecture and molecular evolution of ant odorant receptors. Genome Res 28:1757–1765CrossRef McKenzie SK, Kronauer DJC (2018) The genomic architecture and molecular evolution of ant odorant receptors. Genome Res 28:1757–1765CrossRef
58.
go back to reference Mitaka Y, Akino T (2021) A review of termite pheromones: multifaceted, context -dependent, and rational chemical communications. Front Ecol Evol 8:595614CrossRef Mitaka Y, Akino T (2021) A review of termite pheromones: multifaceted, context -dependent, and rational chemical communications. Front Ecol Evol 8:595614CrossRef
59.
go back to reference Sherman PW, Jarvis JUM, Alexander RD (1991) The biology of the naked mole-rat (monographs in behavior and ecology). Princeton Univ Press, Princeton Sherman PW, Jarvis JUM, Alexander RD (1991) The biology of the naked mole-rat (monographs in behavior and ecology). Princeton Univ Press, Princeton
60.
go back to reference Bennett NC, Faulkes CG (2000) African mole-rats: ecology and eusociality. Cambridge University Press, Cambridge Bennett NC, Faulkes CG (2000) African mole-rats: ecology and eusociality. Cambridge University Press, Cambridge
61.
go back to reference Brett RA (1991) The ecology of naked-mole-rat colonies: burrowing, food, and limiting factors. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the naked mole-rat. Princeton University Press, Princeton, pp 137–148 Brett RA (1991) The ecology of naked-mole-rat colonies: burrowing, food, and limiting factors. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the naked mole-rat. Princeton University Press, Princeton, pp 137–148
62.
go back to reference Faulkes CG, Abbott DH, Jarvis JUM, Sherriff F (1990) LH responses of female naked mole-rats, Heterocephalus glaber, to single and multiple doses of exogenous GnRH. J Reprod Fertil 89:317–323CrossRef Faulkes CG, Abbott DH, Jarvis JUM, Sherriff F (1990) LH responses of female naked mole-rats, Heterocephalus glaber, to single and multiple doses of exogenous GnRH. J Reprod Fertil 89:317–323CrossRef
63.
go back to reference Faulkes CG, Abbott DH, Jarvis JUM (1991) Social suppression of reproduction in male naked mole-rats, Heterocephalus glaber. J Reprod Fertil 91:593–604CrossRef Faulkes CG, Abbott DH, Jarvis JUM (1991) Social suppression of reproduction in male naked mole-rats, Heterocephalus glaber. J Reprod Fertil 91:593–604CrossRef
64.
go back to reference Faulkes CG, Abbott DH (1993) Evidence that primer pheromones do not cause social suppression of reproduction in male and female naked-mole rats (Heterocephalus glaber). J Reprod Fertil 99:225–230CrossRef Faulkes CG, Abbott DH (1993) Evidence that primer pheromones do not cause social suppression of reproduction in male and female naked-mole rats (Heterocephalus glaber). J Reprod Fertil 99:225–230CrossRef
65.
go back to reference Watarai A, Arai N, Miyawaki S, Okano H, Miura K, Mogi K, Kikusui T (2018) Responses to pup vocalizations in subordinate naked mole-rats are induced by estradiol ingested through coprophagy of queen’s feces. Proc Natl Acad Sci USA 115:9264–9269CrossRef Watarai A, Arai N, Miyawaki S, Okano H, Miura K, Mogi K, Kikusui T (2018) Responses to pup vocalizations in subordinate naked mole-rats are induced by estradiol ingested through coprophagy of queen’s feces. Proc Natl Acad Sci USA 115:9264–9269CrossRef
66.
go back to reference Kutsukake N, Inada M, Sakamoto SH, Okanoya K (2012) A distinct role of the queen in coordinated workload and soil distribution in eusocial naked mole-rats. PLoS ONE 7:e44584CrossRef Kutsukake N, Inada M, Sakamoto SH, Okanoya K (2012) A distinct role of the queen in coordinated workload and soil distribution in eusocial naked mole-rats. PLoS ONE 7:e44584CrossRef
67.
go back to reference Mackie GO (1986) From aggregates to integrates: physiological aspects of modularity in colonial animals. Phil Trans R Soc Lond B 313:175–196CrossRef Mackie GO (1986) From aggregates to integrates: physiological aspects of modularity in colonial animals. Phil Trans R Soc Lond B 313:175–196CrossRef
68.
go back to reference Simpson C, Herrera-Cubilla A, Jackson BC (2020) How colonial animals evolve. Sci Adv 6:eaaw9530CrossRef Simpson C, Herrera-Cubilla A, Jackson BC (2020) How colonial animals evolve. Sci Adv 6:eaaw9530CrossRef
69.
go back to reference Mapstone GM (2014) Global diversity and review of Siphonophorae (Cnidaria: Hydrozoa). PLoS ONE 9:e87737CrossRef Mapstone GM (2014) Global diversity and review of Siphonophorae (Cnidaria: Hydrozoa). PLoS ONE 9:e87737CrossRef
70.
go back to reference Mukai H, Terakado K, Reed C (1997) Bryozoa. In: Harrison FW, Woollacott RM (eds) Microscopic anatomy of invertebrates. Wiley, Hoboken, pp 45–206 Mukai H, Terakado K, Reed C (1997) Bryozoa. In: Harrison FW, Woollacott RM (eds) Microscopic anatomy of invertebrates. Wiley, Hoboken, pp 45–206
71.
go back to reference Lidgard S, Carter MC, Dick MH, Gordon DP, Ostrovsky AN (2012) Division of labor and recurrent evolution of polymorphisms in a group of colonial animals. Evol Ecol 26:233–257CrossRef Lidgard S, Carter MC, Dick MH, Gordon DP, Ostrovsky AN (2012) Division of labor and recurrent evolution of polymorphisms in a group of colonial animals. Evol Ecol 26:233–257CrossRef
72.
go back to reference Schack CR, Gordon DP, Ryan KG (2019) Modularity is the mother of invention: a review of polymorphism in bryozoans. Biol Rev 94:773–809CrossRef Schack CR, Gordon DP, Ryan KG (2019) Modularity is the mother of invention: a review of polymorphism in bryozoans. Biol Rev 94:773–809CrossRef
73.
go back to reference Yamaguchi H, Hirose M, Nakamura M, Udagawa S, Oguchi K, Shinji J, Kohtsuka H, Miura T (2021) Developmental process of a heterozooid: avicularium formation in a bryozoan, Bugulina californica. Zool Sci 38:203–212CrossRef Yamaguchi H, Hirose M, Nakamura M, Udagawa S, Oguchi K, Shinji J, Kohtsuka H, Miura T (2021) Developmental process of a heterozooid: avicularium formation in a bryozoan, Bugulina californica. Zool Sci 38:203–212CrossRef
74.
go back to reference Miura T, Oguchi K, Nakamura M, Jimi N, Miura S, Hayashi Y, Koshikawa S, Aguado MT (2019) Life cycle of the Japanese green syllid, Megasyllis nipponica (Annelida: Syllidae): field collection and establishment of rearing system. Zool Sci 36:372–379CrossRef Miura T, Oguchi K, Nakamura M, Jimi N, Miura S, Hayashi Y, Koshikawa S, Aguado MT (2019) Life cycle of the Japanese green syllid, Megasyllis nipponica (Annelida: Syllidae): field collection and establishment of rearing system. Zool Sci 36:372–379CrossRef
75.
go back to reference Imajima M (1966) The syllidae (Polychaetous Annelids) from Japan (V)-Syllinae. Publ Seto Mar Biol Lab 14:253–294CrossRef Imajima M (1966) The syllidae (Polychaetous Annelids) from Japan (V)-Syllinae. Publ Seto Mar Biol Lab 14:253–294CrossRef
76.
go back to reference Malaquin A (1893) Recherches sur les Syllidiens: morphologie, anatomie, reproduction, développement. Mém Soc Sci Arts Lille, Sér 4(18):1–477 Malaquin A (1893) Recherches sur les Syllidiens: morphologie, anatomie, reproduction, développement. Mém Soc Sci Arts Lille, Sér 4(18):1–477
77.
go back to reference Franke H (1999) Reproduction of the Syllidae (Annelida: Polychaeta). Hydrobiologia 402:39–55CrossRef Franke H (1999) Reproduction of the Syllidae (Annelida: Polychaeta). Hydrobiologia 402:39–55CrossRef
78.
go back to reference Theraulaz G, Bonabeau E, Denuebourg J-N (1998) Response threshold reinforcements and division of labour in insect societies. Proc R Soc Lond B 265:327–332CrossRef Theraulaz G, Bonabeau E, Denuebourg J-N (1998) Response threshold reinforcements and division of labour in insect societies. Proc R Soc Lond B 265:327–332CrossRef
79.
go back to reference Bodi M, Thenius R, Szopek M, Schmickl T, Crailsheim K (2012) Interaction of robot swarms using the honeybee-inspired control algorithm BEECLUST. Math Comput Model Dyn Syst 18:87–100MATHCrossRef Bodi M, Thenius R, Szopek M, Schmickl T, Crailsheim K (2012) Interaction of robot swarms using the honeybee-inspired control algorithm BEECLUST. Math Comput Model Dyn Syst 18:87–100MATHCrossRef
80.
81.
go back to reference Bonabeau E, Theraulaz G, Dorigo M (1999) Swarm intelligence: from natural to artificial systems. Santa Fe Institute Studies on the Sciences of Complexity. Oxford University Press, OxfordMATHCrossRef Bonabeau E, Theraulaz G, Dorigo M (1999) Swarm intelligence: from natural to artificial systems. Santa Fe Institute Studies on the Sciences of Complexity. Oxford University Press, OxfordMATHCrossRef
82.
go back to reference Shimizu M, Ishiguro A, Kawakatsu T (2005) Slimebot: a modular robot that exploits emergent phenomena. In Proc. 2005 IEEE International Conference on Robotics and Automation, pp 2982–2987 Shimizu M, Ishiguro A, Kawakatsu T (2005) Slimebot: a modular robot that exploits emergent phenomena. In Proc. 2005 IEEE International Conference on Robotics and Automation, pp 2982–2987
83.
go back to reference Li S, Batra R, Brown D, Chang HD, Ranganathan N, Hoberman C, Rus D, Lipson H (2019) Particle robotics based on statistical mechanics of loosely coupled components. Nature 567:361–365CrossRef Li S, Batra R, Brown D, Chang HD, Ranganathan N, Hoberman C, Rus D, Lipson H (2019) Particle robotics based on statistical mechanics of loosely coupled components. Nature 567:361–365CrossRef
84.
go back to reference Werfel J, Petersen K, Nagpal R (2014) Designing collective behavior in a termite-inspired robot construction team. Science 343:754–758CrossRef Werfel J, Petersen K, Nagpal R (2014) Designing collective behavior in a termite-inspired robot construction team. Science 343:754–758CrossRef
Metadata
Title
Understanding of superorganisms: collective behavior, differentiation and social organization
Authors
Toru Miura
Kohei Oguchi
Haruka Yamaguchi
Mayuko Nakamura
Daisuke Sato
Kenta Kobayashi
Nobuyuki Kutsukake
Kyoko Miura
Yoshinobu Hayashi
Masaru Hojo
Kiyoto Maekawa
Shuji Shigenobu
Takeshi Kano
Akio Ishiguro
Publication date
11-03-2022
Publisher
Springer Japan
Published in
Artificial Life and Robotics / Issue 2/2022
Print ISSN: 1433-5298
Electronic ISSN: 1614-7456
DOI
https://doi.org/10.1007/s10015-022-00754-x

Other articles of this Issue 2/2022

Artificial Life and Robotics 2/2022 Go to the issue