Skip to main content
Top
Published in: Cellulose 3/2014

01-06-2014 | Original Paper

Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose

Authors: Hongming Lou, Haifeng Zhou, Xiuli Li, Mengxia Wang, J. Y. Zhu, Xueqing Qiu

Published in: Cellulose | Issue 3/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effects of lignosulfonate (LS) on enzymatic saccharification of pure cellulose were studied. Four fractions of LS with different molecular weight (MW) prepared by ultrafiltration of a commercial LS were applied at different loadings to enzymatic hydrolysis of Whatman paper under different pH. Using LS fractions with low MW and high degree of sulfonation can enhance enzymatic cellulose saccharification despite LS can bind to cellulase nonproductively. The enhancing effect varies with LS properties, its loading, and hydrolysis pH. Inhibitive effect on cellulose saccharification was also observed using LS with large MW and low degree of sulfonation. The concept of “LS-cellulase aggregate stabilized and enhanced cellulase binding” was proposed to explain the observed enhancement of cellulose saccharification. The concept was demonstrated by the linear correlation between the measured amount of bound cellulase and saccharification efficiency with and without LS of different MW in a range of pH.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chem 12(4):539–554CrossRef Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chem 12(4):539–554CrossRef
go back to reference Bradford M (1976) A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254CrossRef Bradford M (1976) A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254CrossRef
go back to reference Castanon M, Wilke CR (1981) Effects of the surfactant Tween 80 on Enzymatic hydrolysis of Newspaper. Biotechnol Bioeng 13:1365–1372CrossRef Castanon M, Wilke CR (1981) Effects of the surfactant Tween 80 on Enzymatic hydrolysis of Newspaper. Biotechnol Bioeng 13:1365–1372CrossRef
go back to reference Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microbial Technol 31(3):353–364CrossRef Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microbial Technol 31(3):353–364CrossRef
go back to reference Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810CrossRef Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810CrossRef
go back to reference Haynes CA, Sliwinsky E, Norde W (1994) Structural and electrostatic properties of globular proteins at a polystyrene-water interface. J Colloid Interface Sci 164(2):394–409CrossRef Haynes CA, Sliwinsky E, Norde W (1994) Structural and electrostatic properties of globular proteins at a polystyrene-water interface. J Colloid Interface Sci 164(2):394–409CrossRef
go back to reference Helle SS, Duff SJB, Cooper DG (1993) Effect of surfactants on cellulose hydrolysis. Biotechnol Bioeng 42:611–617CrossRef Helle SS, Duff SJB, Cooper DG (1993) Effect of surfactants on cellulose hydrolysis. Biotechnol Bioeng 42:611–617CrossRef
go back to reference Henrissat B (1994) Cellulases and their interaction with cellulose. Cellulose 1(3):169–196CrossRef Henrissat B (1994) Cellulases and their interaction with cellulose. Cellulose 1(3):169–196CrossRef
go back to reference Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807CrossRef Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807CrossRef
go back to reference Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333(6047):1279–1282CrossRef Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333(6047):1279–1282CrossRef
go back to reference Kim MH, Lee SB, Ryu DDY, Reese ET (1982) Surface deactivation of cellulase and its prevention. Enzym Microbial Technol 4(2):99–103CrossRef Kim MH, Lee SB, Ryu DDY, Reese ET (1982) Surface deactivation of cellulase and its prevention. Enzym Microbial Technol 4(2):99–103CrossRef
go back to reference Lan TQ, Lou H, Zhu JY (2013) Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2–6.2. Bioenerg Res 6(2):476–485CrossRef Lan TQ, Lou H, Zhu JY (2013) Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2–6.2. Bioenerg Res 6(2):476–485CrossRef
go back to reference Lehtio J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100(2):484–489CrossRef Lehtio J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100(2):484–489CrossRef
go back to reference Leu SY, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenerg Res 6(2):405–415CrossRef Leu SY, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenerg Res 6(2):405–415CrossRef
go back to reference Leu S-Y, Gleisner R, Zhu JY, Sessions J, Marrs G (2013) Robust enzymatic saccharification of a Douglas-fir forest harvest residue by SPORL. Biomass Bioenergy 59:393–401CrossRef Leu S-Y, Gleisner R, Zhu JY, Sessions J, Marrs G (2013) Robust enzymatic saccharification of a Douglas-fir forest harvest residue by SPORL. Biomass Bioenergy 59:393–401CrossRef
go back to reference Li J, Li S, Fan C, Yan Z (2012) The mechanism of poly(ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose. Colloids Surf B 89(1):203–210CrossRef Li J, Li S, Fan C, Yan Z (2012) The mechanism of poly(ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose. Colloids Surf B 89(1):203–210CrossRef
go back to reference Liu H, Zhu JY (2010) Eliminating inhibition of enzymatic hydrolysis by lignosulfonate in unwashed sulfite-pretreated aspen using metal salts. Bioresour Technol 101(23):9120–9127CrossRef Liu H, Zhu JY (2010) Eliminating inhibition of enzymatic hydrolysis by lignosulfonate in unwashed sulfite-pretreated aspen using metal salts. Bioresour Technol 101(23):9120–9127CrossRef
go back to reference Liu H, Zhu JY, Fu S (2010) Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose. J Agric Food Chem 58:7233–7238CrossRef Liu H, Zhu JY, Fu S (2010) Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose. J Agric Food Chem 58:7233–7238CrossRef
go back to reference Liu H, Zhu JY, Chai XS (2011) In situ, rapid, and temporally resolved measurements of cellulase adsorption onto lignocellulosic substrates by UV-vis spectrophotometry. Langmuir 27(1):272–278CrossRef Liu H, Zhu JY, Chai XS (2011) In situ, rapid, and temporally resolved measurements of cellulase adsorption onto lignocellulosic substrates by UV-vis spectrophotometry. Langmuir 27(1):272–278CrossRef
go back to reference Lou H, Zhu JY, Lan TQ, Lai H, Qiu X (2013) pH-induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. ChemSusChem 6(5):919–927CrossRef Lou H, Zhu JY, Lan TQ, Lai H, Qiu X (2013) pH-induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. ChemSusChem 6(5):919–927CrossRef
go back to reference Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011a) Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 108(3):538–548CrossRef Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011a) Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 108(3):538–548CrossRef
go back to reference Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011b) The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Bioresour Technol 102(6):4507–4517CrossRef Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011b) The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Bioresour Technol 102(6):4507–4517CrossRef
go back to reference Ooshima H, Sakata M, Harano Y (1986) Enhancement of enzymatic hydrolysis of cellulose by surfactant. Biotechnol Bioeng 28:1727–1734CrossRef Ooshima H, Sakata M, Harano Y (1986) Enhancement of enzymatic hydrolysis of cellulose by surfactant. Biotechnol Bioeng 28:1727–1734CrossRef
go back to reference Ouyang X, Deng Y, Qian Y, Zhang P, Qiu X (2011) Adsorption characteristics of lignosulfonates in salt-free and salt-added aqueous solutions. Biomacromolecules 12(9):3313–3320CrossRef Ouyang X, Deng Y, Qian Y, Zhang P, Qiu X (2011) Adsorption characteristics of lignosulfonates in salt-free and salt-added aqueous solutions. Biomacromolecules 12(9):3313–3320CrossRef
go back to reference Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang Y-HP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108(1):22–30CrossRef Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang Y-HP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108(1):22–30CrossRef
go back to reference Shiiba H, Hayashi S, Yui T (2013) Molecular dynamics study of carbohydrate binding module mutants of fungal cellobiohydrolases. Carbohydr Res 374:96–102CrossRef Shiiba H, Hayashi S, Yui T (2013) Molecular dynamics study of carbohydrate binding module mutants of fungal cellobiohydrolases. Carbohydr Res 374:96–102CrossRef
go back to reference Várnai A, Siika-Aho M, Viikari L (2013) Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnol Biofuels 6(1) Várnai A, Siika-Aho M, Viikari L (2013) Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnol Biofuels 6(1)
go back to reference Wang QQ, He Z, Zhu Z, Zhang Y-HP, Ni Y, Luo XL, Zhu JY (2012) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109(2):381–389CrossRef Wang QQ, He Z, Zhu Z, Zhang Y-HP, Ni Y, Luo XL, Zhu JY (2012) Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol Bioeng 109(2):381–389CrossRef
go back to reference Wang Z, Zhu JY, Fu Y, Qin M, Shao Z, Jiang J, Yang F (2013a) Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin. Biotechnol Biofuels 6:156CrossRef Wang Z, Zhu JY, Fu Y, Qin M, Shao Z, Jiang J, Yang F (2013a) Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin. Biotechnol Biofuels 6:156CrossRef
go back to reference Wang ZJ, Lan TQ, Zhu JY (2013b) Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses. Biotechnol Biofuels 6:9CrossRef Wang ZJ, Lan TQ, Zhu JY (2013b) Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses. Biotechnol Biofuels 6:9CrossRef
go back to reference Zhou H, Lou H, Yang D, Zhu JY, Qiu X (2013a) Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: Role of molecular weight and substrate lignin. Ind Eng Chem Res 52(25):8464–8470CrossRef Zhou H, Lou H, Yang D, Zhu JY, Qiu X (2013a) Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: Role of molecular weight and substrate lignin. Ind Eng Chem Res 52(25):8464–8470CrossRef
go back to reference Zhou H, Zhu JY, Luo X, Leu S-Y, Wu X, Gleisner R, Dien BS, Hector RE, Yang D, Qiu X, Horn E, Negron J (2013b) Bioconversion of beetle-killed lodgepole pine using SPORL: Process scale-up design, lignin coproduct, and high solids fermentation without detoxification. Ind Eng Chem Res 52(45):16057–16065CrossRef Zhou H, Zhu JY, Luo X, Leu S-Y, Wu X, Gleisner R, Dien BS, Hector RE, Yang D, Qiu X, Horn E, Negron J (2013b) Bioconversion of beetle-killed lodgepole pine using SPORL: Process scale-up design, lignin coproduct, and high solids fermentation without detoxification. Ind Eng Chem Res 52(45):16057–16065CrossRef
go back to reference Zhu JY, Zhuang XS (2012) Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Prog Energy Combust Sci 38(4):583–589CrossRef Zhu JY, Zhuang XS (2012) Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Prog Energy Combust Sci 38(4):583–589CrossRef
go back to reference Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100(8):2411–2418CrossRef Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100(8):2411–2418CrossRef
go back to reference Zhu JY, Gleisner R, Scott CT, Luo XL, Tian S (2011) High titer ethanol production from simultaneous enzymatic saccharification and fermentation of aspen at high solids: a comparison between SPORL and dilute acid pretreatments. Bioresour Technol 102(19):8921–8929CrossRef Zhu JY, Gleisner R, Scott CT, Luo XL, Tian S (2011) High titer ethanol production from simultaneous enzymatic saccharification and fermentation of aspen at high solids: a comparison between SPORL and dilute acid pretreatments. Bioresour Technol 102(19):8921–8929CrossRef
Metadata
Title
Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose
Authors
Hongming Lou
Haifeng Zhou
Xiuli Li
Mengxia Wang
J. Y. Zhu
Xueqing Qiu
Publication date
01-06-2014
Publisher
Springer Netherlands
Published in
Cellulose / Issue 3/2014
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-014-0237-z

Other articles of this Issue 3/2014

Cellulose 3/2014 Go to the issue