Skip to main content
Top
Published in: Cellulose 3/2014

01-06-2014 | Original Paper

Dilute ammonia pretreatment of sugarcane bagasse followed by enzymatic hydrolysis to sugars

Authors: Hongdan Zhang, Shubin Wu

Published in: Cellulose | Issue 3/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, dilute ammonia pretreatment was performed to break the intricate structure of sugarcane bagasse, which resists the enzyme accessibility to cellulose. The effects of pretreatment temperatures (140–180 °C), times (20–100 min) and ammonia dosage (5–25 wt%) on the recoveries of glucan, xylan, and acid in-soluble lignin were evaluated. The pretreatment performed at 170 °C, 60 min and 15 wt% ammonia resulted in delignification of 36.9 % and retaining 94.7 % of glucan and 63.1 % of xylan in the raw material. Then the enzymatic digestibilities of pretreated samples were investigated, 34.2 g glucose and 13.2 g xylose based on 100 g raw material could be obtained after that pretreatment condition, representing 82.7 % glucose and 47.3 % xylose in sugarcane bagasse. The enhanced digestibilities of dilute ammonia pretreated sugarcane bagasse were due to delignification and the removal of proportion of hemicellulose, which were confirmed by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alvira P, Tomas-pejo E, Ballesteros M, Negro MG (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis. A review. Bioresour Technol 101:4851–4861CrossRef Alvira P, Tomas-pejo E, Ballesteros M, Negro MG (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis. A review. Bioresour Technol 101:4851–4861CrossRef
go back to reference Boonsombuti A, Luengnaruemitchai A, Wongkasemjit S (2013) Enhancement of enzymatic hydrolysis of corncob by microwave-assisted alkali pretreatment and its effect in morphology. Cellulose 4:1957–1966CrossRef Boonsombuti A, Luengnaruemitchai A, Wongkasemjit S (2013) Enhancement of enzymatic hydrolysis of corncob by microwave-assisted alkali pretreatment and its effect in morphology. Cellulose 4:1957–1966CrossRef
go back to reference Cao S, Aita GM (2013) Enzymatic hydrolysis and ethanol yields of combined surfactant and dilute ammonia treated sugarcane bagasse. Bioresour Technol 131:357–364CrossRef Cao S, Aita GM (2013) Enzymatic hydrolysis and ethanol yields of combined surfactant and dilute ammonia treated sugarcane bagasse. Bioresour Technol 131:357–364CrossRef
go back to reference Chang VS, Holtzapple M (2000) Fundamentals factors affecting biomass reactivity. Appl Biochem Biotechnol 84–86:5–37CrossRef Chang VS, Holtzapple M (2000) Fundamentals factors affecting biomass reactivity. Appl Biochem Biotechnol 84–86:5–37CrossRef
go back to reference Delmotte L, Ganne-Chedeville C, Leban JM, Pizzi A, Pichelin F (2008) MAS 13C NMR and FT-IR investigation of the degradation reactions of polymer constituents in wood welding. Polym Degrad Stab 93:406–412CrossRef Delmotte L, Ganne-Chedeville C, Leban JM, Pizzi A, Pichelin F (2008) MAS 13C NMR and FT-IR investigation of the degradation reactions of polymer constituents in wood welding. Polym Degrad Stab 93:406–412CrossRef
go back to reference Gassan J, Bledzki AK (1999) Possibilities of improving the mechanical properties of jute/epoxy composites by alkali treatment of fibers. Compos Sci Technol 59:1303–1309CrossRef Gassan J, Bledzki AK (1999) Possibilities of improving the mechanical properties of jute/epoxy composites by alkali treatment of fibers. Compos Sci Technol 59:1303–1309CrossRef
go back to reference Kim TH, Lee YY (2007) Pretreatment of corn stover using soaking in aqueous ammonia at moderate temperature. Appl Biochem Biotechnol 136–140:81–92 Kim TH, Lee YY (2007) Pretreatment of corn stover using soaking in aqueous ammonia at moderate temperature. Appl Biochem Biotechnol 136–140:81–92
go back to reference Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99:5694–5702CrossRef Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99:5694–5702CrossRef
go back to reference Lee JM, Jameel H, Venditti RA (2010) A comparison of the auto hydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Bioresour Technol 101:5449–5458CrossRef Lee JM, Jameel H, Venditti RA (2010) A comparison of the auto hydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Bioresour Technol 101:5449–5458CrossRef
go back to reference Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production. Current perspectives, potential issues and future prospects. Prog Energy Combust 38:449–467CrossRef Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production. Current perspectives, potential issues and future prospects. Prog Energy Combust 38:449–467CrossRef
go back to reference Ling TP, Hassan O, Badri K, Maskat MY, Mustapha WAW (2013) Sugar recovery of enzymatic hydrolysed oil palm empty fruit bunch fiber by chemical pretreatment. Cellulose 20:3191–3203CrossRef Ling TP, Hassan O, Badri K, Maskat MY, Mustapha WAW (2013) Sugar recovery of enzymatic hydrolysed oil palm empty fruit bunch fiber by chemical pretreatment. Cellulose 20:3191–3203CrossRef
go back to reference Liu Z, Padmanabhan S, Cheng K, Schwyter P, Pauly M, Bell AT, Prausnitz JM (2013) Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresour Technol 135:23–29CrossRef Liu Z, Padmanabhan S, Cheng K, Schwyter P, Pauly M, Bell AT, Prausnitz JM (2013) Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresour Technol 135:23–29CrossRef
go back to reference Martin C, Galbe M, Nilvebrant NO, Jonsson LJ (2002) Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents. Appl Biochem Biotech 98–100:699–716CrossRef Martin C, Galbe M, Nilvebrant NO, Jonsson LJ (2002) Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents. Appl Biochem Biotech 98–100:699–716CrossRef
go back to reference Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef
go back to reference Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80CrossRef Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80CrossRef
go back to reference Peng YY, Wu SB (2010) The structural and thermal characteristics of wheat straw hemicellulose. J Anal Appl Pyrolysis 88:134–139CrossRef Peng YY, Wu SB (2010) The structural and thermal characteristics of wheat straw hemicellulose. J Anal Appl Pyrolysis 88:134–139CrossRef
go back to reference Qiu ZH, Aita GM, Walker MS (2012) Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour Technol 117:251–256CrossRef Qiu ZH, Aita GM, Walker MS (2012) Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour Technol 117:251–256CrossRef
go back to reference Ruzene DS, Silva DP, Vicente AA, Teixeira JA, Amorim MT, Goncalves AR (2009) Cellulosic films obtained from the treatment of sugarcane bagasse fibers with N-methylmorpholine-N-oxide (NMMO). Appl Biochem Biotechnol 154:38–47CrossRef Ruzene DS, Silva DP, Vicente AA, Teixeira JA, Amorim MT, Goncalves AR (2009) Cellulosic films obtained from the treatment of sugarcane bagasse fibers with N-methylmorpholine-N-oxide (NMMO). Appl Biochem Biotechnol 154:38–47CrossRef
go back to reference Salvi DA, Aita GM, Robert D, Bazan V (2010) Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation. Appl Biochem Biotechnol 161:67–74CrossRef Salvi DA, Aita GM, Robert D, Bazan V (2010) Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation. Appl Biochem Biotechnol 161:67–74CrossRef
go back to reference Segal L, Creely L, Martin AE (1959) An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely L, Martin AE (1959) An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text Res J 29:786–794CrossRef
go back to reference Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Laboratory Analytical Procedure (LAP) National Renewable Energy Laboratory, US Department of Energy Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Laboratory Analytical Procedure (LAP) National Renewable Energy Laboratory, US Department of Energy
go back to reference Sonia A, Dasan KP (2013) Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydr Polym 92:668–674CrossRef Sonia A, Dasan KP (2013) Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydr Polym 92:668–674CrossRef
go back to reference Wang B, Wang XJ, Feng H (2010) Deconstructing recalcitrant miscanthus with alkaline peroxide and electrolyzed water. Bioresour Technol 101:752–760CrossRef Wang B, Wang XJ, Feng H (2010) Deconstructing recalcitrant miscanthus with alkaline peroxide and electrolyzed water. Bioresour Technol 101:752–760CrossRef
go back to reference Wei L, Shrestha A, Tu M, Adhikari S (2011) Effects of surfactant on biochemical and hydrothermal conversion of softwood hemicellulose to ethanol and furan derivatives. Process Biochem 46:1785–1792CrossRef Wei L, Shrestha A, Tu M, Adhikari S (2011) Effects of surfactant on biochemical and hydrothermal conversion of softwood hemicellulose to ethanol and furan derivatives. Process Biochem 46:1785–1792CrossRef
go back to reference Wei WQ, Wu SB, Liu LG (2012) Enzymatic saccharification of dilute acid pretreated Eucalyptus chips for fermentable sugar production. Bioresour Technol 110:302–307CrossRef Wei WQ, Wu SB, Liu LG (2012) Enzymatic saccharification of dilute acid pretreated Eucalyptus chips for fermentable sugar production. Bioresour Technol 110:302–307CrossRef
go back to reference Yu J, Zhang JB, He J, Liu Z, Yu Z (2009) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100:903–908CrossRef Yu J, Zhang JB, He J, Liu Z, Yu Z (2009) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100:903–908CrossRef
go back to reference Zhang YHP (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotech 35:367–375CrossRef Zhang YHP (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotech 35:367–375CrossRef
go back to reference Zhang HD, Xu SH, Wu SB (2013) Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour Technol 143:391–396CrossRef Zhang HD, Xu SH, Wu SB (2013) Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour Technol 143:391–396CrossRef
Metadata
Title
Dilute ammonia pretreatment of sugarcane bagasse followed by enzymatic hydrolysis to sugars
Authors
Hongdan Zhang
Shubin Wu
Publication date
01-06-2014
Publisher
Springer Netherlands
Published in
Cellulose / Issue 3/2014
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-014-0233-3

Other articles of this Issue 3/2014

Cellulose 3/2014 Go to the issue