Skip to main content
Top
Published in: Cellulose 3/2014

01-06-2014 | Original Paper

Comparative potentiality of Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/chemical pretreatment

Authors: Tidarat Komolwanich, Patomwat Tatijarern, Sirirat Prasertwasu, Darin Khumsupan, Thanyalak Chaisuwan, Apanee Luengnaruemitchai, Sujitra Wongkasemjit

Published in: Cellulose | Issue 3/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Two-stage microwave (microwave/NaOH pretreatment followed by microwave/H2SO4 pretreatment) was used to release monomeric sugars from Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax). The optimum pretreatment conditions were investigated, and the maximum monomeric sugar yields were compared. The microwave-assisted NaOH and H2SO4 pretreatments with a 15:1 liquid-to-solid ratio were studied by varying the chemical concentration, reaction temperature, and reaction time to optimize the amount of monomeric sugars. The maximum amounts of monomeric sugars released from microwave-assisted NaOH pretreatment were 6.8 g/100 g of biomass [at 80 °C/5 min, 5 % (w/v) NaOH for S. spontaneum and at 120 °C/5 min, 5 % (w/v) NaOH for A. donax]. Furthermore, the maximum amounts of monomeric sugars released from microwave-assisted H2SO4 pretreatment of S. spontaneum and A. donax were 33.8 [at 200 °C/10 min, 0.5 % (w/v) H2SO4] and 31.9 [at 180 °C/30 min, 0.5 % (w/v) H2SO4] g/100 g of biomass, respectively. The structural changes of S. spontaneum and A. donax were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105CrossRef Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105CrossRef
go back to reference Boonmanumsin P, Treeboobpha S, Jeamjumnunja K, Luengnaruemitchai A, Chaisuwan T, Wongkasemjit S (2012) Release of monomeric sugars from Miscanthussinensis by microwave-assisted ammonia and phosphoric acid treatments. Bioresour Technol 103:425–431CrossRef Boonmanumsin P, Treeboobpha S, Jeamjumnunja K, Luengnaruemitchai A, Chaisuwan T, Wongkasemjit S (2012) Release of monomeric sugars from Miscanthussinensis by microwave-assisted ammonia and phosphoric acid treatments. Bioresour Technol 103:425–431CrossRef
go back to reference Chandel AK, Narasu ML, Chandrasekhar G, Manikyam A, Rao LV (2009) Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour Technol 100:2404–2410CrossRef Chandel AK, Narasu ML, Chandrasekhar G, Manikyam A, Rao LV (2009) Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour Technol 100:2404–2410CrossRef
go back to reference Fan LT, Gharpuray MM, Lee Y-H (1987) Cellulose hydrolysis. Biotechnology monographs. Springer, Berlin, pp 3–57CrossRef Fan LT, Gharpuray MM, Lee Y-H (1987) Cellulose hydrolysis. Biotechnology monographs. Springer, Berlin, pp 3–57CrossRef
go back to reference Feldman D (1985) Wood: chemistry, ultrastructure, reactions. J Polym Sci Polym Lett Edn 23(11):601–602 Feldman D (1985) Wood: chemistry, ultrastructure, reactions. J Polym Sci Polym Lett Edn 23(11):601–602
go back to reference Franscisco L, Carlos GJ, Antonio P, Javier FM, Minerva AMZ, Gil G (2010) Chemical and energetic characterization of species with a high-biomass production: Fractionation of their components. Environ Prog Sustain Energy 29(4):499–509CrossRef Franscisco L, Carlos GJ, Antonio P, Javier FM, Minerva AMZ, Gil G (2010) Chemical and energetic characterization of species with a high-biomass production: Fractionation of their components. Environ Prog Sustain Energy 29(4):499–509CrossRef
go back to reference García-Aparicio AP, Ballesteros I, González A, Oliva JM, Ballesteros M, Negro MJ (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129:278–288CrossRef García-Aparicio AP, Ballesteros I, González A, Oliva JM, Ballesteros M, Negro MJ (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129:278–288CrossRef
go back to reference Gierer J (1985) Chemistry of delignification. Wood Sci Technol 19(4):289–312 Gierer J (1985) Chemistry of delignification. Wood Sci Technol 19(4):289–312
go back to reference Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRef Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRef
go back to reference Howard RL, Abotsi E, Van Rensburg ELJ, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619 Howard RL, Abotsi E, Van Rensburg ELJ, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619
go back to reference Hsu TC, Guo GL, Chen WH, Hwang WS (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907–4913CrossRef Hsu TC, Guo GL, Chen WH, Hwang WS (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907–4913CrossRef
go back to reference Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38:369–378CrossRef Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38:369–378CrossRef
go back to reference Intanakul P, Krairish M, Kitchaiya P (2003) Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. J Wood Chem Technol 23(2):217–225CrossRef Intanakul P, Krairish M, Kitchaiya P (2003) Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. J Wood Chem Technol 23(2):217–225CrossRef
go back to reference Jackowiak D, Frigon JC, Ribeiro T, Pauss A, Guiot S (2011) Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresour Technol 102:3535–3540CrossRef Jackowiak D, Frigon JC, Ribeiro T, Pauss A, Guiot S (2011) Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresour Technol 102:3535–3540CrossRef
go back to reference Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326CrossRef Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326CrossRef
go back to reference Leustean I (2009) Bioethanol from lignocellulosic materials. J Agroaliment Process Technol 15:94–101 Leustean I (2009) Bioethanol from lignocellulosic materials. J Agroaliment Process Technol 15:94–101
go back to reference Li K, Fu S, Zhan Y, Lucia LA (2010) Analysis of the chemical composition and morphological structure of Banana pseudostem. Bioresources 5(2):576–585 Li K, Fu S, Zhan Y, Lucia LA (2010) Analysis of the chemical composition and morphological structure of Banana pseudostem. Bioresources 5(2):576–585
go back to reference Lu Y, Mosier NS (2007) Biomimetic catalysis for hemicellulose hydrolysis in corn stover. Biotechnol Prog 23:116–123CrossRef Lu Y, Mosier NS (2007) Biomimetic catalysis for hemicellulose hydrolysis in corn stover. Biotechnol Prog 23:116–123CrossRef
go back to reference Mansilla HD, Baeza J, Urzúa S, Maturana G, Villaseñor J, Durán N (1998) Acid-catalysed hydrolysis of rice hull: evaluation of furfural production. Bioresour Technol 66:189–193CrossRef Mansilla HD, Baeza J, Urzúa S, Maturana G, Villaseñor J, Durán N (1998) Acid-catalysed hydrolysis of rice hull: evaluation of furfural production. Bioresour Technol 66:189–193CrossRef
go back to reference Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)2 treatments (“Overliming”) on the composition and toxicity of bagasse hemicelluloses hydrolysates. Biotechnol Bioeng 69(5):526–536CrossRef Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)2 treatments (“Overliming”) on the composition and toxicity of bagasse hemicelluloses hydrolysates. Biotechnol Bioeng 69(5):526–536CrossRef
go back to reference Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRef
go back to reference Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity: relating pH to biomatrix opening. New Biotechnol 27(6):739–750CrossRef Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity: relating pH to biomatrix opening. New Biotechnol 27(6):739–750CrossRef
go back to reference Perdue RE (1958) Arundodonax-source of musical reeds and industrial cellulose. Econ Bot 12:368–404CrossRef Perdue RE (1958) Arundodonax-source of musical reeds and industrial cellulose. Econ Bot 12:368–404CrossRef
go back to reference Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700CrossRef Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700CrossRef
go back to reference Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295CrossRef Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295CrossRef
go back to reference Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32(5):422–430CrossRef Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32(5):422–430CrossRef
go back to reference Scordia D, Cosentino SL, Jeffries TW (2010) Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. Bioresour Technol 101:5358–5365CrossRef Scordia D, Cosentino SL, Jeffries TW (2010) Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. Bioresour Technol 101:5358–5365CrossRef
go back to reference Scordia D, Cosentino SL, Lee JW, Jeffries TW (2012) Bioconversion of giant reed (Arundodonax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054. Biomass Bioenergy 39:296–305CrossRef Scordia D, Cosentino SL, Lee JW, Jeffries TW (2012) Bioconversion of giant reed (Arundodonax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054. Biomass Bioenergy 39:296–305CrossRef
go back to reference Sluiter JB, Sluiter AD et al. (2010) Summative mass closure: Laboratory Analytical Procedure (LAP) Review and Integration: Feedstocks. NREL/TP-510-48087. Golden, CO: National Renewable Energy Laboratory Sluiter JB, Sluiter AD et al. (2010) Summative mass closure: Laboratory Analytical Procedure (LAP) Review and Integration: Feedstocks. NREL/TP-510-48087. Golden, CO: National Renewable Energy Laboratory
go back to reference Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J et al (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211CrossRef Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J et al (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211CrossRef
go back to reference Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef
go back to reference Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis precesses for ethanol from lignocellulosic materials: a review. Bioresources 2(3):472–499 Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis precesses for ethanol from lignocellulosic materials: a review. Bioresources 2(3):472–499
go back to reference Tai PYP, Miller JD (2001) A core collection for Saccharum spontaneum L. from the world collection of sugarcane. Crop Sci 41:879–885CrossRef Tai PYP, Miller JD (2001) A core collection for Saccharum spontaneum L. from the world collection of sugarcane. Crop Sci 41:879–885CrossRef
go back to reference VidalJr BC, Dien BS, Ting KC, Singh V (2011) Influence of feedstock particle size on lignocellulose conversion: a review. Appl Biochem Biotechnol 164:1405–1421CrossRef VidalJr BC, Dien BS, Ting KC, Singh V (2011) Influence of feedstock particle size on lignocellulose conversion: a review. Appl Biochem Biotechnol 164:1405–1421CrossRef
go back to reference Wang B, Wang X, Feng H (2010) Deconstructing recalcitrant Miscanthus with alkaline peroxide and electrolyzed water. Bioresour Technol 101:752–760CrossRef Wang B, Wang X, Feng H (2010) Deconstructing recalcitrant Miscanthus with alkaline peroxide and electrolyzed water. Bioresour Technol 101:752–760CrossRef
go back to reference Xiong J, Ye J, Liang WZ, Fan PM (2000) Influence of microwave on the ultrastructure of cellulose I. J south china UnivTechnol 28(3):84–89 Xiong J, Ye J, Liang WZ, Fan PM (2000) Influence of microwave on the ultrastructure of cellulose I. J south china UnivTechnol 28(3):84–89
go back to reference Zhu S, Wu Y, Yu Z, Liao J, Zhang Y (2005) Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem 40:3082–3086CrossRef Zhu S, Wu Y, Yu Z, Liao J, Zhang Y (2005) Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem 40:3082–3086CrossRef
Metadata
Title
Comparative potentiality of Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/chemical pretreatment
Authors
Tidarat Komolwanich
Patomwat Tatijarern
Sirirat Prasertwasu
Darin Khumsupan
Thanyalak Chaisuwan
Apanee Luengnaruemitchai
Sujitra Wongkasemjit
Publication date
01-06-2014
Publisher
Springer Netherlands
Published in
Cellulose / Issue 3/2014
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-0161-7

Other articles of this Issue 3/2014

Cellulose 3/2014 Go to the issue