Skip to main content
Top
Published in: Microsystem Technologies 7/2016

29-12-2015 | Technical Paper

Up-scaled macro-device implementation of a MEMS wideband vibration piezoelectric energy harvester design concept

Authors: J. Iannacci, G. Sordo

Published in: Microsystem Technologies | Issue 7/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we discuss a novel mechanical resonator design for the realisation of vibration Energy Harvester (EH) capable to deliver power levels in the mW range. The device overcomes the typical constraint of frequency narrowband operability of standard cantilevered EHs, by exploiting a circular-shaped resonator with an increased number of mechanical Degrees Of Freedom (DOFs), leading to several resonant modes in the range of vibrations of interest (i.e. multi-modal wideband EH). The device, named Four-Leaf Clover (FLC), is simulated in Ansys Workbench™, showing a significant number of resonant modes up to vibrations of around 2 kHz (modal eigenfrequencies analysis), and exhibiting levels of converted power up to a few mW at resonance (harmonic coupled-field analysis). The FLC mechanical structure, along with cantilevered test structure, is realised by micro-milling of an Aluminium foil. PolyVinyliDene Fluoride (PVDF) film sheet pads are assembled in order to collect first experimental feedback on generated power levels. The FLC and cantilevered EH test structures are characterised experimentally with a measurement setup purposely developed, showing encouraging performance related to the technology chosen for the realisation of EH, thus paving the way for full validation of the macro-FLC concept.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Cottone F, Basset P, Vocca H, Gammaitoni L (2012) Electromagnetic Buckled Beam Oscillator for Enhanced Vibration Energy Harvesting. IEEE International Conference on Green Computing and Communications (GreenCom) 624–627 Cottone F, Basset P, Vocca H, Gammaitoni L (2012) Electromagnetic Buckled Beam Oscillator for Enhanced Vibration Energy Harvesting. IEEE International Conference on Green Computing and Communications (GreenCom) 624–627
go back to reference Cugat O, Delamare J, Reyne G (2003) Magnetic micro-actuators and systems (MAGMAS). IEEE Trans Magn 39:3607–3612CrossRef Cugat O, Delamare J, Reyne G (2003) Magnetic micro-actuators and systems (MAGMAS). IEEE Trans Magn 39:3607–3612CrossRef
go back to reference Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. John Wiley & Sons, HobokenCrossRef Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. John Wiley & Sons, HobokenCrossRef
go back to reference Iannacci J, Serra E, Di Criscienzo R, Sordo G, Gottardi M, Borrielli A, Bonaldi M, Kuenzig T, Schrag G, Pandraud G, Sarro PM (2014) Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes. Springer Microsystem Technologies 20:627–640CrossRef Iannacci J, Serra E, Di Criscienzo R, Sordo G, Gottardi M, Borrielli A, Bonaldi M, Kuenzig T, Schrag G, Pandraud G, Sarro PM (2014) Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes. Springer Microsystem Technologies 20:627–640CrossRef
go back to reference Iannacci J, Sordo G, Serra E, Schmid U (2015) A novel MEMS-based piezoelectric multi-modal vibration energy harvester concept to power autonomous remote sensing nodes for internet of things (IoT) applications. IEEE Sensors 2015 International Conference 1457–1460 Iannacci J, Sordo G, Serra E, Schmid U (2015) A novel MEMS-based piezoelectric multi-modal vibration energy harvester concept to power autonomous remote sensing nodes for internet of things (IoT) applications. IEEE Sensors 2015 International Conference 1457–1460
go back to reference Kaźmierski TJ, Beeby S (eds) (2010) Energy harvesting systems: principles. Modeling and Applications, Springer Kaźmierski TJ, Beeby S (eds) (2010) Energy harvesting systems: principles. Modeling and Applications, Springer
go back to reference Kok S-L, Ab Rahman MF, Yap DFW, Ho YH (2011) Bandwidth widening strategies for piezoelectric based energy harvesting from ambient vibration sources. IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE) 492–496 Kok S-L, Ab Rahman MF, Yap DFW, Ho YH (2011) Bandwidth widening strategies for piezoelectric based energy harvesting from ambient vibration sources. IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE) 492–496
go back to reference Lallart M (ed) (2012) Small-scale energy harvesting. InTech, Rijeka Lallart M (ed) (2012) Small-scale energy harvesting. InTech, Rijeka
go back to reference Liu SW, Lye SW, Miao JM (2012) Sandwich structured electrostatic/electrets parallel-plate power generator for low acceleration and low frequency vibration energy harvesting. IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) 1277–1280 Liu SW, Lye SW, Miao JM (2012) Sandwich structured electrostatic/electrets parallel-plate power generator for low acceleration and low frequency vibration energy harvesting. IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) 1277–1280
go back to reference Qiaochu Tang Q, Li X (2015) Two-stage wideband energy harvester driven by multimode coupled vibration. IEEE/ASME Trans Mechatron 20:115–121CrossRef Qiaochu Tang Q, Li X (2015) Two-stage wideband energy harvester driven by multimode coupled vibration. IEEE/ASME Trans Mechatron 20:115–121CrossRef
go back to reference Raju M (2008) Energy Harvesting ULP meets energy harvesting: a game-changing combination for design engineers. White Paper, Texas Instruments, Dallas Raju M (2008) Energy Harvesting ULP meets energy harvesting: a game-changing combination for design engineers. White Paper, Texas Instruments, Dallas
go back to reference Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers, DordrechtCrossRef Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers, DordrechtCrossRef
go back to reference Tan YK (ed) (2011) Sustainable Energy Harvesting Technologies—Past, Present and Future. InTech, Rijeka Tan YK (ed) (2011) Sustainable Energy Harvesting Technologies—Past, Present and Future. InTech, Rijeka
go back to reference Tao K, Ding G, Wang P, Yang Z, Wang Y (2012) Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) 1237–1240 Tao K, Ding G, Wang P, Yang Z, Wang Y (2012) Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) 1237–1240
go back to reference Uckelmann D, Harrison M, Michahelles F (eds) (2011) Architecting the Internet of Things. Springer, Berlin Uckelmann D, Harrison M, Michahelles F (eds) (2011) Architecting the Internet of Things. Springer, Berlin
go back to reference Vermesan O, Friess P (eds) (2014) Internet of things applications—from research and innovation to market deployment. River Publishers, Aalborg Vermesan O, Friess P (eds) (2014) Internet of things applications—from research and innovation to market deployment. River Publishers, Aalborg
go back to reference Vullers RJM, Schaijk RV, Visser HJ, Penders J, Hoof CV (2010) Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Mag 2:29–38CrossRef Vullers RJM, Schaijk RV, Visser HJ, Penders J, Hoof CV (2010) Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Mag 2:29–38CrossRef
go back to reference Wahied GA, Gihan N (2012) Design considerations for piezoelectric energy harvesting systems. International Conference on Engineering and Technology (ICET) 1–6 Wahied GA, Gihan N (2012) Design considerations for piezoelectric energy harvesting systems. International Conference on Engineering and Technology (ICET) 1–6
go back to reference Wang H, Zhou X, Qiu W, Fu B, Wen L (2014) Simulation and experiments of broadband piezoelectric energy harvesting devices. IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) 618–662 Wang H, Zhou X, Qiu W, Fu B, Wen L (2014) Simulation and experiments of broadband piezoelectric energy harvesting devices. IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) 618–662
Metadata
Title
Up-scaled macro-device implementation of a MEMS wideband vibration piezoelectric energy harvester design concept
Authors
J. Iannacci
G. Sordo
Publication date
29-12-2015
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 7/2016
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2794-y

Other articles of this Issue 7/2016

Microsystem Technologies 7/2016 Go to the issue