Skip to main content
Top

2011 | OriginalPaper | Chapter

Uptake, Intracellular Localization and Biodistribution of Carbon Nanotubes

Authors : V. Neves, H. M. Coley, J. McFadden, S. R. P. Silva

Published in: Carbon Nanotubes for Biomedical Applications

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon nanotubes (CNTs) exhibit unique size, shape and physical properties, which make them promising candidates for biomedical applications. In particular, carbon nanotubes have been intensively studied for conjugation with pre-existing therapeutic agents for more effective targeting, as a result of their ability to cross cell membranes. However, to utilise them effectively in biological systems it is extremely important to understand how they behave at the cellular level and their distribution in vivo. Additionally, in order to consider carbon nanotubes as candidate delivery systems of therapeutic agents it is important to ascertain their fate in vivo, but also take into account many factors, such as solubility, stability and clearance. Issues surrounding their short term and long term safety are currently the subject of toxicology testing. Herein, we propose to summarize the main findings on the uptake, trafficking and biodistribution of carbon nanotubes, with special focus on functionalized carbon nanotubes for delivery of therapeutic agents.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang, L., et al.: Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83(5), 761–769 (2008)CrossRef Zhang, L., et al.: Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83(5), 761–769 (2008)CrossRef
2.
go back to reference Shaffer, C.: Nanomedicine transforms drug delivery. Drug Discov. Today 10(23–24), 1581–1582 (2005)CrossRef Shaffer, C.: Nanomedicine transforms drug delivery. Drug Discov. Today 10(23–24), 1581–1582 (2005)CrossRef
3.
go back to reference Alexis, F., et al.: New frontiers in nanotechnology for cancer treatment. Urol. Oncol. 26(1), 74–85 (2008)CrossRef Alexis, F., et al.: New frontiers in nanotechnology for cancer treatment. Urol. Oncol. 26(1), 74–85 (2008)CrossRef
4.
go back to reference James, N.D., et al.: Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin. Oncol. (R Coll. Radiol.) 6(5), 294–296 (1994)CrossRef James, N.D., et al.: Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin. Oncol. (R Coll. Radiol.) 6(5), 294–296 (1994)CrossRef
5.
go back to reference Muggia, F.M.: Doxil in breast cancer. J. Clin. Oncol. 16(2), 811–812 (1998)CrossRef Muggia, F.M.: Doxil in breast cancer. J. Clin. Oncol. 16(2), 811–812 (1998)CrossRef
6.
go back to reference Schluep, T., et al.: Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin. Cancer Res. 12(5), 1606–1614 (2006)CrossRef Schluep, T., et al.: Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin. Cancer Res. 12(5), 1606–1614 (2006)CrossRef
7.
go back to reference Pridgen, E.M., Langer, R., Farokhzad, O.C.: Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine 2(5), 669–680 (2007)CrossRef Pridgen, E.M., Langer, R., Farokhzad, O.C.: Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine 2(5), 669–680 (2007)CrossRef
8.
go back to reference Romberg, B., Hennink, W.E., Storm, G.: Sheddable coatings for long-circulating nanoparticles. Pharm. Res. 25(1), 55–71 (2008)CrossRef Romberg, B., Hennink, W.E., Storm, G.: Sheddable coatings for long-circulating nanoparticles. Pharm. Res. 25(1), 55–71 (2008)CrossRef
9.
go back to reference Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001) Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001)
10.
go back to reference Owens 3rd, D.E., Peppas, N.A.: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307(1), 93–102 (2006)CrossRef Owens 3rd, D.E., Peppas, N.A.: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307(1), 93–102 (2006)CrossRef
11.
go back to reference Ferrari, M.: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005)CrossRef Ferrari, M.: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005)CrossRef
12.
go back to reference Simionescu, M., Simionescu, N., Palade, G.E.: Morphometric data on the endothelium of blood capillaries. J. Cell Biol. 60(1), 128–152 (1974)CrossRef Simionescu, M., Simionescu, N., Palade, G.E.: Morphometric data on the endothelium of blood capillaries. J. Cell Biol. 60(1), 128–152 (1974)CrossRef
13.
go back to reference Brigham, K.L.: Estimations of permeability properties of pulmonary capillaries (continuous endothelium). Physiologist 23(1), 44–46 (1980) Brigham, K.L.: Estimations of permeability properties of pulmonary capillaries (continuous endothelium). Physiologist 23(1), 44–46 (1980)
14.
go back to reference Ryan, U.S., et al.: Fenestrated endothelium of the adrenal gland: freeze-fracture studies. Tissue Cell 7(1), 181–190 (1975)CrossRef Ryan, U.S., et al.: Fenestrated endothelium of the adrenal gland: freeze-fracture studies. Tissue Cell 7(1), 181–190 (1975)CrossRef
15.
go back to reference Braet, F., et al.: Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc. Res. Tech. 70(3), 230–242 (2007)CrossRef Braet, F., et al.: Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc. Res. Tech. 70(3), 230–242 (2007)CrossRef
16.
go back to reference Maeda, H.: The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001)CrossRef Maeda, H.: The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001)CrossRef
17.
go back to reference Greish, K.: Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J. Drug Target. 15(7–8), 457–464 (2007)CrossRef Greish, K.: Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J. Drug Target. 15(7–8), 457–464 (2007)CrossRef
18.
go back to reference Hobbs, S.K., et al.: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95(8), 4607–4612 (1998)CrossRef Hobbs, S.K., et al.: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95(8), 4607–4612 (1998)CrossRef
19.
go back to reference Sanhai, W.R., et al.: Seven challenges for nanomedicine. Nat. Nanotechnol. 3(5), 242–244 (2008)CrossRef Sanhai, W.R., et al.: Seven challenges for nanomedicine. Nat. Nanotechnol. 3(5), 242–244 (2008)CrossRef
20.
go back to reference Pantarotto, D., et al.: Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (1), 16–17 (2004) Pantarotto, D., et al.: Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (1), 16–17 (2004)
21.
go back to reference Pantarotto, D., et al.: Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43, 5242–5246 (2004)CrossRef Pantarotto, D., et al.: Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43, 5242–5246 (2004)CrossRef
22.
go back to reference Kostarelos, K., et al.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2(2), 108–113 (2007)CrossRef Kostarelos, K., et al.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2(2), 108–113 (2007)CrossRef
23.
go back to reference Lopez, C.F., et al.: Understanding nature’s design for a nanosyringe. Proc. Natl. Acad. Sci. USA 101(13), 4431–4434 (2004)CrossRef Lopez, C.F., et al.: Understanding nature’s design for a nanosyringe. Proc. Natl. Acad. Sci. USA 101(13), 4431–4434 (2004)CrossRef
24.
go back to reference Kam, N.W.S., et al.: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126(22), 6850–6851 (2004)CrossRef Kam, N.W.S., et al.: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126(22), 6850–6851 (2004)CrossRef
25.
go back to reference Kam, N.W.S., Dai, H.J.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127(16), 6021–6026 (2005)CrossRef Kam, N.W.S., Dai, H.J.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127(16), 6021–6026 (2005)CrossRef
26.
go back to reference Kam, N.W.S., Liu, Z.A., Dai, H.J.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45(4), 577–581 (2006)CrossRef Kam, N.W.S., Liu, Z.A., Dai, H.J.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 45(4), 577–581 (2006)CrossRef
27.
go back to reference Cherukuri, P., et al.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126(48), 15638–15639 (2004)CrossRef Cherukuri, P., et al.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126(48), 15638–15639 (2004)CrossRef
28.
go back to reference Meinke, M., et al.: Chemometric determination of blood parameters using visible-near-infrared spectra. Appl. Spectrosc. 59(6), 826–835 (2005)CrossRef Meinke, M., et al.: Chemometric determination of blood parameters using visible-near-infrared spectra. Appl. Spectrosc. 59(6), 826–835 (2005)CrossRef
29.
go back to reference Becker, M.L., et al.: Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv. Mater. 19(7), 939–945 (2007)CrossRef Becker, M.L., et al.: Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv. Mater. 19(7), 939–945 (2007)CrossRef
30.
go back to reference Heller, D.A., et al.: Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793–2799 (2005)CrossRef Heller, D.A., et al.: Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793–2799 (2005)CrossRef
31.
go back to reference Jorio, A., et al.: Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86(6), 1118–1121 (2001)CrossRef Jorio, A., et al.: Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86(6), 1118–1121 (2001)CrossRef
32.
go back to reference Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)MATHCrossRef Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)MATHCrossRef
33.
go back to reference Strano, M.S., et al.: Assignment of (n, m) Raman and optical features of metallic single-walled carbon nanotubes. Nano Lett. 3(8), 1091–1096 (2003)CrossRef Strano, M.S., et al.: Assignment of (n, m) Raman and optical features of metallic single-walled carbon nanotubes. Nano Lett. 3(8), 1091–1096 (2003)CrossRef
34.
go back to reference Doorn, S.K., et al.: Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A Mater. Sci. Process. 78(8), 1147–1155 (2004)CrossRef Doorn, S.K., et al.: Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A Mater. Sci. Process. 78(8), 1147–1155 (2004)CrossRef
35.
go back to reference Chin, S.F., et al.: Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Exp. Biol. Med. 232(9), 1236–1244 (2007)CrossRef Chin, S.F., et al.: Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Exp. Biol. Med. 232(9), 1236–1244 (2007)CrossRef
36.
go back to reference Yehia, H., et al.: Single-walled carbon nanotube interactions with HeLa cells. J. Nanobiotechnol. 5(1), 8 (2007)CrossRef Yehia, H., et al.: Single-walled carbon nanotube interactions with HeLa cells. J. Nanobiotechnol. 5(1), 8 (2007)CrossRef
37.
go back to reference Lamprecht, C., et al.: AFM imaging of functionalized carbon nanotubes on biological membranes. Nanotechnology 20(43), 434001–434007 (2009)CrossRef Lamprecht, C., et al.: AFM imaging of functionalized carbon nanotubes on biological membranes. Nanotechnology 20(43), 434001–434007 (2009)CrossRef
38.
go back to reference Jin, H., Heller, D.A., Strano, M.S.: Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 8(6), 1577–1585 (2008)CrossRef Jin, H., Heller, D.A., Strano, M.S.: Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 8(6), 1577–1585 (2008)CrossRef
39.
go back to reference Chithrani, B.D., Chan, W.C.W.: Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7(6), 1542–1550 (2007)CrossRef Chithrani, B.D., Chan, W.C.W.: Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7(6), 1542–1550 (2007)CrossRef
40.
go back to reference Jin, H., et al.: Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3(1), 149–158 (2009)CrossRef Jin, H., et al.: Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3(1), 149–158 (2009)CrossRef
41.
go back to reference Lacerda, L., et al.: Intracellular trafficking of carbon nanotubes by confocal laser scanning microscopy. Adv. Mater. 19(11), 1480–1484 (2007)CrossRef Lacerda, L., et al.: Intracellular trafficking of carbon nanotubes by confocal laser scanning microscopy. Adv. Mater. 19(11), 1480–1484 (2007)CrossRef
42.
go back to reference Singh, R., et al.: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA 103, 3357–3362 (2006)CrossRef Singh, R., et al.: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA 103, 3357–3362 (2006)CrossRef
43.
go back to reference Maynard, A.D., et al.: Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health. A 67(1), 87–107 (2004)CrossRef Maynard, A.D., et al.: Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health. A 67(1), 87–107 (2004)CrossRef
44.
go back to reference Huczko, A., et al.: Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J. Phys. Chem. B 109(34), 16244–16251 (2005)CrossRef Huczko, A., et al.: Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J. Phys. Chem. B 109(34), 16244–16251 (2005)CrossRef
45.
go back to reference Lam, C.W., et al.: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126–134 (2004)CrossRef Lam, C.W., et al.: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126–134 (2004)CrossRef
46.
go back to reference Warheit, D.B., et al.: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77, 117–125 (2004)CrossRef Warheit, D.B., et al.: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77, 117–125 (2004)CrossRef
47.
go back to reference Shvedova, A.A., et al.: Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289(5), L698–L708 (2005)CrossRef Shvedova, A.A., et al.: Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289(5), L698–L708 (2005)CrossRef
48.
go back to reference Yokoyama, A., et al.: Biological behavior of hat-stacked carbon nanofibers in the subcutaneous tissue in rats. Nano Lett. 5(1), 157–161 (2005)CrossRef Yokoyama, A., et al.: Biological behavior of hat-stacked carbon nanofibers in the subcutaneous tissue in rats. Nano Lett. 5(1), 157–161 (2005)CrossRef
49.
go back to reference Sato, Y., et al.: Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. Biosyst. 1(2), 176–182 (2005)CrossRef Sato, Y., et al.: Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. Biosyst. 1(2), 176–182 (2005)CrossRef
50.
go back to reference Sayes, C.M., Fortner, J.D., Guo, W., Lyon, D., Boyd, A.M., Ausman, K.D., Tao, Y.J., Sitharaman, B., Wilson, L.J., Hughes, J.B., West, J.L., Colvin, V.L.: The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4(10), 1881–1887 (2004)CrossRef Sayes, C.M., Fortner, J.D., Guo, W., Lyon, D., Boyd, A.M., Ausman, K.D., Tao, Y.J., Sitharaman, B., Wilson, L.J., Hughes, J.B., West, J.L., Colvin, V.L.: The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4(10), 1881–1887 (2004)CrossRef
51.
go back to reference Sayes, C.M., et al.: Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161(2), 135–142 (2006)CrossRef Sayes, C.M., et al.: Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161(2), 135–142 (2006)CrossRef
52.
go back to reference Wang, H., et al.: Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 4(8), 1019–1024 (2004)CrossRef Wang, H., et al.: Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 4(8), 1019–1024 (2004)CrossRef
53.
go back to reference Lacerda, L., et al.: Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv. Mater. 20(2), 225–230 (2008)CrossRef Lacerda, L., et al.: Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv. Mater. 20(2), 225–230 (2008)CrossRef
54.
go back to reference Lacerda, L., et al.: Carbon-nanotube shape and individualization critical for renal excretion. Small 4(8), 1130–1132 (2008)CrossRef Lacerda, L., et al.: Carbon-nanotube shape and individualization critical for renal excretion. Small 4(8), 1130–1132 (2008)CrossRef
55.
go back to reference Lacerda, L., et al.: Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine 3(2), 149–161 (2008)CrossRef Lacerda, L., et al.: Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine 3(2), 149–161 (2008)CrossRef
56.
go back to reference Cherukuri, P., et al.: Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA 103(50), 18882–18886 (2006)CrossRef Cherukuri, P., et al.: Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA 103(50), 18882–18886 (2006)CrossRef
57.
go back to reference Liu, Z., et al.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2(1), 47–52 (2007)CrossRef Liu, Z., et al.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2(1), 47–52 (2007)CrossRef
58.
go back to reference Zavaleta, C., et al.: Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8(9), 2800–2805 (2008)CrossRef Zavaleta, C., et al.: Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8(9), 2800–2805 (2008)CrossRef
59.
go back to reference Liu, Z., et al.: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 105(5), 1410–1415 (2008)CrossRef Liu, Z., et al.: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 105(5), 1410–1415 (2008)CrossRef
Metadata
Title
Uptake, Intracellular Localization and Biodistribution of Carbon Nanotubes
Authors
V. Neves
H. M. Coley
J. McFadden
S. R. P. Silva
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-14802-6_9