Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 3/2016

01-06-2016 | Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Variation in magnetic and structural properties of Co-doped Ni–Zn ferrite nanoparticles: a different aspect

Authors: Rajinder Kumar, Hitanshu Kumar, Ragini Raj Singh, P. B. Barman

Published in: Journal of Sol-Gel Science and Technology | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cobalt-substituted nickel–zinc ferrite nanoparticles (Ni0.6−x Zn0.4Co x Fe2O4) (x = 0, 0.0165, 0.033, 0.264 and 0.528) have been synthesized and characterized with respect to their structural and magnetic properties. Exceptionally in spite of the reported literature where the saturation magnetization increases with Co doping that attributes to Co2+ ions distribution in octahedral sites, the saturation magnetization in our samples decreases by increasing Co contents as revealed by vibrating sample magnetometer measurements. To know the structural properties such as phase identification, measurement of crystallite size and other structural parameters, prepared samples have been performed by X-ray diffraction technique. The X-ray diffraction spectra measurements show that samples have single-phase spinel cubic structure at x = 0, 0.033, 0.264 and 0.528, and at x = 0.0165, there is partial formation of hematite phase. The uncommonly decreased saturation magnetization, variation in retentivity, coercivity and magneto-crystalline anisotropy and also variation in structural properties with Co doping are explained on the basis of Co2+ ions distribution in tetrahedral and octahedral sites in place of Ni2+ and Zn2+ ions having different magnetic moments and different ionic radii, respectively. Using transmission electron microscopy, the particles size has been calculated. The morphology and stoichiometry of prepared samples have been investigated by field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy techniques, respectively. The structural and magnetic measurement results are well co-related with each other with respect to Co2+ ions doping and its distributions. The moderate saturation magnetization and low coercivity values of all samples show soft magnetic behavior and attribute the usefulness of these materials in magnetic recording devices.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82:269–280CrossRef Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82:269–280CrossRef
2.
go back to reference Chen Q, Du P, Huang W, Jin Lu, Weng W, Han G (2007) Ferrite with extraordinary electric and dielectric properties prepared from self-combustion technique. Appl Phys Lett 90:132907CrossRef Chen Q, Du P, Huang W, Jin Lu, Weng W, Han G (2007) Ferrite with extraordinary electric and dielectric properties prepared from self-combustion technique. Appl Phys Lett 90:132907CrossRef
3.
go back to reference Fujimori H, Yoshimoto H, Masumoto T, Mitera T (1981) Anomalous eddy current loss and amorphous magnetic materials with low core loss. J Appl Phys 52:1893CrossRef Fujimori H, Yoshimoto H, Masumoto T, Mitera T (1981) Anomalous eddy current loss and amorphous magnetic materials with low core loss. J Appl Phys 52:1893CrossRef
4.
go back to reference Tsutaoka T (2003) Frequency dispersion of complex permeability in Mn–Zn and Ni–Zn spinel ferrites and their composite materials. J Appl Phys 93:2789CrossRef Tsutaoka T (2003) Frequency dispersion of complex permeability in Mn–Zn and Ni–Zn spinel ferrites and their composite materials. J Appl Phys 93:2789CrossRef
5.
go back to reference Gubbala S, Nathani H, Koizol K, Misra RDK (2004) Magnetic properties of nanocrystalline Ni–Zn, Zn–Mn, and Ni–Mn ferrites synthesized by reverse micelle technique. Phys B Condens Matter 348:317–328CrossRef Gubbala S, Nathani H, Koizol K, Misra RDK (2004) Magnetic properties of nanocrystalline Ni–Zn, Zn–Mn, and Ni–Mn ferrites synthesized by reverse micelle technique. Phys B Condens Matter 348:317–328CrossRef
6.
go back to reference Saafan SA, Meaz TM, El-Ghazzawy EH, El Nimr MK, Ayad MM, Bakr M (2010) AC and DC conductivity of NiZn ferrite nanoparticles in wet and dry conditions. J Magn Magn Mater 322:2369–2374CrossRef Saafan SA, Meaz TM, El-Ghazzawy EH, El Nimr MK, Ayad MM, Bakr M (2010) AC and DC conductivity of NiZn ferrite nanoparticles in wet and dry conditions. J Magn Magn Mater 322:2369–2374CrossRef
7.
go back to reference Singhal S, Kailash C (2007) Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J Solid State Chem 180:296–300CrossRef Singhal S, Kailash C (2007) Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J Solid State Chem 180:296–300CrossRef
8.
go back to reference Kumar PSA, Shrotri JJ, Kulkarni SD, Deshpande CE, Date SK (1996) Low temperature synthesis of Ni0.8Zn0.2Fe2O4 powder and its characterization. Mater Lett 27:293–296CrossRef Kumar PSA, Shrotri JJ, Kulkarni SD, Deshpande CE, Date SK (1996) Low temperature synthesis of Ni0.8Zn0.2Fe2O4 powder and its characterization. Mater Lett 27:293–296CrossRef
9.
go back to reference Rao BP, Caltun OF (2006) Microstructure and magnetic behavior of Ni–Zn–Co ferrites. J Adv Mater 8:995–997 Rao BP, Caltun OF (2006) Microstructure and magnetic behavior of Ni–Zn–Co ferrites. J Adv Mater 8:995–997
10.
go back to reference Bercoff PG, Bertorello HR (2000) Localized canting effect in Zn-substituted Ni ferrites. J Magn Magn Mater 213:56–62CrossRef Bercoff PG, Bertorello HR (2000) Localized canting effect in Zn-substituted Ni ferrites. J Magn Magn Mater 213:56–62CrossRef
11.
go back to reference Veverka M, Jirák Z, Kaman O, Knížek K, Maryško M, Pollert E, Závěta K, Lančok A, Dlouhá M, Vratislav S (2011) Distribution of cations in nanosize and bulk Co–Zn ferrites. Nanotechnology 22:345701CrossRef Veverka M, Jirák Z, Kaman O, Knížek K, Maryško M, Pollert E, Závěta K, Lančok A, Dlouhá M, Vratislav S (2011) Distribution of cations in nanosize and bulk Co–Zn ferrites. Nanotechnology 22:345701CrossRef
12.
go back to reference Niyaifar M (2014) Effect of preparation on structure and magnetic properties of ZnFe2O4. J Magn 19:101–105CrossRef Niyaifar M (2014) Effect of preparation on structure and magnetic properties of ZnFe2O4. J Magn 19:101–105CrossRef
13.
go back to reference Oliver SA, Harris VG, Hamdeh HH, Ho JC (2000) Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders. Appl Phys Lett 76:2761–2763CrossRef Oliver SA, Harris VG, Hamdeh HH, Ho JC (2000) Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders. Appl Phys Lett 76:2761–2763CrossRef
14.
go back to reference Rezlescu E, Sachelarie L, Popa PD, Rezlescu N (2000) Effect of substitution of divalent ions on the electrical and magnetic properties of Ni–Zn–Me ferrites. IEEE Trans Magn 36:3962–3967CrossRef Rezlescu E, Sachelarie L, Popa PD, Rezlescu N (2000) Effect of substitution of divalent ions on the electrical and magnetic properties of Ni–Zn–Me ferrites. IEEE Trans Magn 36:3962–3967CrossRef
15.
go back to reference Shannigrahi SR, Pramoda KP, Nugroho FAA (2012) Synthesis and characterizations of microwave sintered ferrite powders and their composite films for practical applications. J Magn Magn Mater 324:140–145CrossRef Shannigrahi SR, Pramoda KP, Nugroho FAA (2012) Synthesis and characterizations of microwave sintered ferrite powders and their composite films for practical applications. J Magn Magn Mater 324:140–145CrossRef
16.
go back to reference Xiang S, Wang YX, Xiang YA, Yong XI, Zhuang JF, Tang PD (2009) Megahertz magneto-dielectric properties of nanosized NiZnCo ferrite from CTAB-assisted hydrothermal process. Trans Nonferrous Metals Soc China 19:1588–1592CrossRef Xiang S, Wang YX, Xiang YA, Yong XI, Zhuang JF, Tang PD (2009) Megahertz magneto-dielectric properties of nanosized NiZnCo ferrite from CTAB-assisted hydrothermal process. Trans Nonferrous Metals Soc China 19:1588–1592CrossRef
17.
go back to reference Xiang J, Shen X, Meng X (2009) Preparation of Co-substituted MnZn ferrite fibers and their magnetic properties. Mater Chem Phys 114:362–366CrossRef Xiang J, Shen X, Meng X (2009) Preparation of Co-substituted MnZn ferrite fibers and their magnetic properties. Mater Chem Phys 114:362–366CrossRef
18.
go back to reference Kumar GR, Kumar KV, Venudhar YC (2012) Synthesis, structural and magnetic properties of copper substituted nickel ferrites by sol–gel method. Mater Sci Appl 3:87 Kumar GR, Kumar KV, Venudhar YC (2012) Synthesis, structural and magnetic properties of copper substituted nickel ferrites by sol–gel method. Mater Sci Appl 3:87
19.
go back to reference Nair SS, Mathews M, Joy PA, Kulkarni SD, Anantharaman MR (2004) Effect of cobalt doping on the magnetic properties of super paramagnetic γ-Fe2O3-polystyrene nanocomposite. J Magn Magn Mater 283:344–352CrossRef Nair SS, Mathews M, Joy PA, Kulkarni SD, Anantharaman MR (2004) Effect of cobalt doping on the magnetic properties of super paramagnetic γ-Fe2O3-polystyrene nanocomposite. J Magn Magn Mater 283:344–352CrossRef
20.
go back to reference Khan MA, urRehman MJ, Mahmood K, Ali I, Akhtar MN, Murtaza G, Shakir I, Warsi MF (2015) Impacts of Tb substitution at cobalt site on structural, morphological and magnetic properties of cobalt ferrites synthesized via double sintering method. Ceram Int 42:286–2293 Khan MA, urRehman MJ, Mahmood K, Ali I, Akhtar MN, Murtaza G, Shakir I, Warsi MF (2015) Impacts of Tb substitution at cobalt site on structural, morphological and magnetic properties of cobalt ferrites synthesized via double sintering method. Ceram Int 42:286–2293
21.
go back to reference Choudary GS, Varma MC, Kumar AM, Rao KH, Kumar BR (2011) Enhancement of magnetic properties in cobalt substituted Ni–Zn nanoferrite system. Am Inst Phys Conf Ser 1347:31–34 Choudary GS, Varma MC, Kumar AM, Rao KH, Kumar BR (2011) Enhancement of magnetic properties in cobalt substituted Ni–Zn nanoferrite system. Am Inst Phys Conf Ser 1347:31–34
22.
go back to reference George M, Nair SS, John AM, Joy PA, Anantharaman MR (2006) Structural, magnetic and electrical properties of the sol–gel prepared Li0.5Fe2.5O4 fine particles. J Phys D Appl Phys 39:900–910CrossRef George M, Nair SS, John AM, Joy PA, Anantharaman MR (2006) Structural, magnetic and electrical properties of the sol–gel prepared Li0.5Fe2.5O4 fine particles. J Phys D Appl Phys 39:900–910CrossRef
23.
go back to reference Prabahar S, Dhanam M (2005) CdS thin films from two different chemical baths—structural and optical analysis. J Cryst Growth 285:41–48CrossRef Prabahar S, Dhanam M (2005) CdS thin films from two different chemical baths—structural and optical analysis. J Cryst Growth 285:41–48CrossRef
24.
go back to reference Iqbal MJ, Siddiquah MR (2008) Structural, electrical and magnetic properties of Zr–Mg cobalt ferrite. J Magn Magn Mater 320:845–850CrossRef Iqbal MJ, Siddiquah MR (2008) Structural, electrical and magnetic properties of Zr–Mg cobalt ferrite. J Magn Magn Mater 320:845–850CrossRef
25.
go back to reference Arana M, Galván V, Jacobo SE, Bercoff PG (2013) Cation distribution and magnetic properties of LiMnZn ferrites. J Alloy Compd 568:5–10CrossRef Arana M, Galván V, Jacobo SE, Bercoff PG (2013) Cation distribution and magnetic properties of LiMnZn ferrites. J Alloy Compd 568:5–10CrossRef
26.
go back to reference Choi EJ, Ahn YK, Song KC, An DH, Lee BG, Kang KU (2004) Cation distribution and spin-canted structure in cobalt ferrite particles from a cobalt-iron hydroxide carbonate complex. J Korean Phys Soc 44:1518–1520 Choi EJ, Ahn YK, Song KC, An DH, Lee BG, Kang KU (2004) Cation distribution and spin-canted structure in cobalt ferrite particles from a cobalt-iron hydroxide carbonate complex. J Korean Phys Soc 44:1518–1520
27.
go back to reference Fayek MK, Bahgat AA, Abbas YM, Moberg L (1982) Neutron diffraction and Mossbauer effect study on a cobalt substituted zinc ferrite. J Phys C: Solid State Phys 15:2509–2518CrossRef Fayek MK, Bahgat AA, Abbas YM, Moberg L (1982) Neutron diffraction and Mossbauer effect study on a cobalt substituted zinc ferrite. J Phys C: Solid State Phys 15:2509–2518CrossRef
28.
go back to reference Sawatzky GA, Van Der Woude F, Morrish AH (1969) Mössbauer study of several ferrimagnetic spinels. Phys Rev 187:747CrossRef Sawatzky GA, Van Der Woude F, Morrish AH (1969) Mössbauer study of several ferrimagnetic spinels. Phys Rev 187:747CrossRef
29.
go back to reference Kumar AM, Rao PA, Varma MC, Choudary GS, Rao KH (2011) Cation distribution in Co0.7Me0.3Fe2O4. J Mod Phys 2:1083CrossRef Kumar AM, Rao PA, Varma MC, Choudary GS, Rao KH (2011) Cation distribution in Co0.7Me0.3Fe2O4. J Mod Phys 2:1083CrossRef
30.
go back to reference Thakur S, Katyal SC, Singh M (2009) Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. J Magn Magn Mater 321:1–7CrossRef Thakur S, Katyal SC, Singh M (2009) Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. J Magn Magn Mater 321:1–7CrossRef
31.
go back to reference Chakrabarty S, Dutta A, Pal M (2015) Enhanced magnetic properties of doped cobalt ferrite nanoparticles by virtue of cation distribution. J Alloy Compd 625:216–223CrossRef Chakrabarty S, Dutta A, Pal M (2015) Enhanced magnetic properties of doped cobalt ferrite nanoparticles by virtue of cation distribution. J Alloy Compd 625:216–223CrossRef
32.
go back to reference Zaki HM, Heniti SH, Elmosalami TA (2015) Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J Alloy Compd 633:104–114CrossRef Zaki HM, Heniti SH, Elmosalami TA (2015) Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J Alloy Compd 633:104–114CrossRef
33.
go back to reference Hakim MA, Kumar SN, Sikder SS, Maria K (2013) Cation distribution and electromagnetic properties of spinel type Ni–Cd ferrites. J Phys Chem Solids 74:1316–1321CrossRef Hakim MA, Kumar SN, Sikder SS, Maria K (2013) Cation distribution and electromagnetic properties of spinel type Ni–Cd ferrites. J Phys Chem Solids 74:1316–1321CrossRef
34.
go back to reference Mohammed KA, Al-Rawas AD, Gismelseed AM, Sellai A, Widatallah HM, Yousif A, Elzain ME, Shongwe M (2012) Infrared and structural studies of Mg1−x Zn x Fe2O4 ferrites. Phys B Condens Matter 407:795–804CrossRef Mohammed KA, Al-Rawas AD, Gismelseed AM, Sellai A, Widatallah HM, Yousif A, Elzain ME, Shongwe M (2012) Infrared and structural studies of Mg1−x Zn x Fe2O4 ferrites. Phys B Condens Matter 407:795–804CrossRef
Metadata
Title
Variation in magnetic and structural properties of Co-doped Ni–Zn ferrite nanoparticles: a different aspect
Authors
Rajinder Kumar
Hitanshu Kumar
Ragini Raj Singh
P. B. Barman
Publication date
01-06-2016
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 3/2016
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-3984-5

Other articles of this Issue 3/2016

Journal of Sol-Gel Science and Technology 3/2016 Go to the issue

Original Paper: Sol-gel and hybrid materials with surface modification for applications

Photocatalytic activity of ascorbic acid-modified TiO2 sol prepared by the peroxo sol–gel method

Original Paper: Fundamentals of sol-gel and hybrid materials processing

Developing an in situ EXAFS experiment of microwave-induced gelation

Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications

Optimization of cerium doping of TiO2 for photocatalytic reduction of CO2 and photocatalytic decomposition of N2O

Premium Partners