Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2016

01.06.2016 | Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Variation in magnetic and structural properties of Co-doped Ni–Zn ferrite nanoparticles: a different aspect

verfasst von: Rajinder Kumar, Hitanshu Kumar, Ragini Raj Singh, P. B. Barman

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cobalt-substituted nickel–zinc ferrite nanoparticles (Ni0.6−x Zn0.4Co x Fe2O4) (x = 0, 0.0165, 0.033, 0.264 and 0.528) have been synthesized and characterized with respect to their structural and magnetic properties. Exceptionally in spite of the reported literature where the saturation magnetization increases with Co doping that attributes to Co2+ ions distribution in octahedral sites, the saturation magnetization in our samples decreases by increasing Co contents as revealed by vibrating sample magnetometer measurements. To know the structural properties such as phase identification, measurement of crystallite size and other structural parameters, prepared samples have been performed by X-ray diffraction technique. The X-ray diffraction spectra measurements show that samples have single-phase spinel cubic structure at x = 0, 0.033, 0.264 and 0.528, and at x = 0.0165, there is partial formation of hematite phase. The uncommonly decreased saturation magnetization, variation in retentivity, coercivity and magneto-crystalline anisotropy and also variation in structural properties with Co doping are explained on the basis of Co2+ ions distribution in tetrahedral and octahedral sites in place of Ni2+ and Zn2+ ions having different magnetic moments and different ionic radii, respectively. Using transmission electron microscopy, the particles size has been calculated. The morphology and stoichiometry of prepared samples have been investigated by field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy techniques, respectively. The structural and magnetic measurement results are well co-related with each other with respect to Co2+ ions doping and its distributions. The moderate saturation magnetization and low coercivity values of all samples show soft magnetic behavior and attribute the usefulness of these materials in magnetic recording devices.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82:269–280CrossRef Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82:269–280CrossRef
2.
Zurück zum Zitat Chen Q, Du P, Huang W, Jin Lu, Weng W, Han G (2007) Ferrite with extraordinary electric and dielectric properties prepared from self-combustion technique. Appl Phys Lett 90:132907CrossRef Chen Q, Du P, Huang W, Jin Lu, Weng W, Han G (2007) Ferrite with extraordinary electric and dielectric properties prepared from self-combustion technique. Appl Phys Lett 90:132907CrossRef
3.
Zurück zum Zitat Fujimori H, Yoshimoto H, Masumoto T, Mitera T (1981) Anomalous eddy current loss and amorphous magnetic materials with low core loss. J Appl Phys 52:1893CrossRef Fujimori H, Yoshimoto H, Masumoto T, Mitera T (1981) Anomalous eddy current loss and amorphous magnetic materials with low core loss. J Appl Phys 52:1893CrossRef
4.
Zurück zum Zitat Tsutaoka T (2003) Frequency dispersion of complex permeability in Mn–Zn and Ni–Zn spinel ferrites and their composite materials. J Appl Phys 93:2789CrossRef Tsutaoka T (2003) Frequency dispersion of complex permeability in Mn–Zn and Ni–Zn spinel ferrites and their composite materials. J Appl Phys 93:2789CrossRef
5.
Zurück zum Zitat Gubbala S, Nathani H, Koizol K, Misra RDK (2004) Magnetic properties of nanocrystalline Ni–Zn, Zn–Mn, and Ni–Mn ferrites synthesized by reverse micelle technique. Phys B Condens Matter 348:317–328CrossRef Gubbala S, Nathani H, Koizol K, Misra RDK (2004) Magnetic properties of nanocrystalline Ni–Zn, Zn–Mn, and Ni–Mn ferrites synthesized by reverse micelle technique. Phys B Condens Matter 348:317–328CrossRef
6.
Zurück zum Zitat Saafan SA, Meaz TM, El-Ghazzawy EH, El Nimr MK, Ayad MM, Bakr M (2010) AC and DC conductivity of NiZn ferrite nanoparticles in wet and dry conditions. J Magn Magn Mater 322:2369–2374CrossRef Saafan SA, Meaz TM, El-Ghazzawy EH, El Nimr MK, Ayad MM, Bakr M (2010) AC and DC conductivity of NiZn ferrite nanoparticles in wet and dry conditions. J Magn Magn Mater 322:2369–2374CrossRef
7.
Zurück zum Zitat Singhal S, Kailash C (2007) Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J Solid State Chem 180:296–300CrossRef Singhal S, Kailash C (2007) Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J Solid State Chem 180:296–300CrossRef
8.
Zurück zum Zitat Kumar PSA, Shrotri JJ, Kulkarni SD, Deshpande CE, Date SK (1996) Low temperature synthesis of Ni0.8Zn0.2Fe2O4 powder and its characterization. Mater Lett 27:293–296CrossRef Kumar PSA, Shrotri JJ, Kulkarni SD, Deshpande CE, Date SK (1996) Low temperature synthesis of Ni0.8Zn0.2Fe2O4 powder and its characterization. Mater Lett 27:293–296CrossRef
9.
Zurück zum Zitat Rao BP, Caltun OF (2006) Microstructure and magnetic behavior of Ni–Zn–Co ferrites. J Adv Mater 8:995–997 Rao BP, Caltun OF (2006) Microstructure and magnetic behavior of Ni–Zn–Co ferrites. J Adv Mater 8:995–997
10.
Zurück zum Zitat Bercoff PG, Bertorello HR (2000) Localized canting effect in Zn-substituted Ni ferrites. J Magn Magn Mater 213:56–62CrossRef Bercoff PG, Bertorello HR (2000) Localized canting effect in Zn-substituted Ni ferrites. J Magn Magn Mater 213:56–62CrossRef
11.
Zurück zum Zitat Veverka M, Jirák Z, Kaman O, Knížek K, Maryško M, Pollert E, Závěta K, Lančok A, Dlouhá M, Vratislav S (2011) Distribution of cations in nanosize and bulk Co–Zn ferrites. Nanotechnology 22:345701CrossRef Veverka M, Jirák Z, Kaman O, Knížek K, Maryško M, Pollert E, Závěta K, Lančok A, Dlouhá M, Vratislav S (2011) Distribution of cations in nanosize and bulk Co–Zn ferrites. Nanotechnology 22:345701CrossRef
12.
Zurück zum Zitat Niyaifar M (2014) Effect of preparation on structure and magnetic properties of ZnFe2O4. J Magn 19:101–105CrossRef Niyaifar M (2014) Effect of preparation on structure and magnetic properties of ZnFe2O4. J Magn 19:101–105CrossRef
13.
Zurück zum Zitat Oliver SA, Harris VG, Hamdeh HH, Ho JC (2000) Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders. Appl Phys Lett 76:2761–2763CrossRef Oliver SA, Harris VG, Hamdeh HH, Ho JC (2000) Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders. Appl Phys Lett 76:2761–2763CrossRef
14.
Zurück zum Zitat Rezlescu E, Sachelarie L, Popa PD, Rezlescu N (2000) Effect of substitution of divalent ions on the electrical and magnetic properties of Ni–Zn–Me ferrites. IEEE Trans Magn 36:3962–3967CrossRef Rezlescu E, Sachelarie L, Popa PD, Rezlescu N (2000) Effect of substitution of divalent ions on the electrical and magnetic properties of Ni–Zn–Me ferrites. IEEE Trans Magn 36:3962–3967CrossRef
15.
Zurück zum Zitat Shannigrahi SR, Pramoda KP, Nugroho FAA (2012) Synthesis and characterizations of microwave sintered ferrite powders and their composite films for practical applications. J Magn Magn Mater 324:140–145CrossRef Shannigrahi SR, Pramoda KP, Nugroho FAA (2012) Synthesis and characterizations of microwave sintered ferrite powders and their composite films for practical applications. J Magn Magn Mater 324:140–145CrossRef
16.
Zurück zum Zitat Xiang S, Wang YX, Xiang YA, Yong XI, Zhuang JF, Tang PD (2009) Megahertz magneto-dielectric properties of nanosized NiZnCo ferrite from CTAB-assisted hydrothermal process. Trans Nonferrous Metals Soc China 19:1588–1592CrossRef Xiang S, Wang YX, Xiang YA, Yong XI, Zhuang JF, Tang PD (2009) Megahertz magneto-dielectric properties of nanosized NiZnCo ferrite from CTAB-assisted hydrothermal process. Trans Nonferrous Metals Soc China 19:1588–1592CrossRef
17.
Zurück zum Zitat Xiang J, Shen X, Meng X (2009) Preparation of Co-substituted MnZn ferrite fibers and their magnetic properties. Mater Chem Phys 114:362–366CrossRef Xiang J, Shen X, Meng X (2009) Preparation of Co-substituted MnZn ferrite fibers and their magnetic properties. Mater Chem Phys 114:362–366CrossRef
18.
Zurück zum Zitat Kumar GR, Kumar KV, Venudhar YC (2012) Synthesis, structural and magnetic properties of copper substituted nickel ferrites by sol–gel method. Mater Sci Appl 3:87 Kumar GR, Kumar KV, Venudhar YC (2012) Synthesis, structural and magnetic properties of copper substituted nickel ferrites by sol–gel method. Mater Sci Appl 3:87
19.
Zurück zum Zitat Nair SS, Mathews M, Joy PA, Kulkarni SD, Anantharaman MR (2004) Effect of cobalt doping on the magnetic properties of super paramagnetic γ-Fe2O3-polystyrene nanocomposite. J Magn Magn Mater 283:344–352CrossRef Nair SS, Mathews M, Joy PA, Kulkarni SD, Anantharaman MR (2004) Effect of cobalt doping on the magnetic properties of super paramagnetic γ-Fe2O3-polystyrene nanocomposite. J Magn Magn Mater 283:344–352CrossRef
20.
Zurück zum Zitat Khan MA, urRehman MJ, Mahmood K, Ali I, Akhtar MN, Murtaza G, Shakir I, Warsi MF (2015) Impacts of Tb substitution at cobalt site on structural, morphological and magnetic properties of cobalt ferrites synthesized via double sintering method. Ceram Int 42:286–2293 Khan MA, urRehman MJ, Mahmood K, Ali I, Akhtar MN, Murtaza G, Shakir I, Warsi MF (2015) Impacts of Tb substitution at cobalt site on structural, morphological and magnetic properties of cobalt ferrites synthesized via double sintering method. Ceram Int 42:286–2293
21.
Zurück zum Zitat Choudary GS, Varma MC, Kumar AM, Rao KH, Kumar BR (2011) Enhancement of magnetic properties in cobalt substituted Ni–Zn nanoferrite system. Am Inst Phys Conf Ser 1347:31–34 Choudary GS, Varma MC, Kumar AM, Rao KH, Kumar BR (2011) Enhancement of magnetic properties in cobalt substituted Ni–Zn nanoferrite system. Am Inst Phys Conf Ser 1347:31–34
22.
Zurück zum Zitat George M, Nair SS, John AM, Joy PA, Anantharaman MR (2006) Structural, magnetic and electrical properties of the sol–gel prepared Li0.5Fe2.5O4 fine particles. J Phys D Appl Phys 39:900–910CrossRef George M, Nair SS, John AM, Joy PA, Anantharaman MR (2006) Structural, magnetic and electrical properties of the sol–gel prepared Li0.5Fe2.5O4 fine particles. J Phys D Appl Phys 39:900–910CrossRef
23.
Zurück zum Zitat Prabahar S, Dhanam M (2005) CdS thin films from two different chemical baths—structural and optical analysis. J Cryst Growth 285:41–48CrossRef Prabahar S, Dhanam M (2005) CdS thin films from two different chemical baths—structural and optical analysis. J Cryst Growth 285:41–48CrossRef
24.
Zurück zum Zitat Iqbal MJ, Siddiquah MR (2008) Structural, electrical and magnetic properties of Zr–Mg cobalt ferrite. J Magn Magn Mater 320:845–850CrossRef Iqbal MJ, Siddiquah MR (2008) Structural, electrical and magnetic properties of Zr–Mg cobalt ferrite. J Magn Magn Mater 320:845–850CrossRef
25.
Zurück zum Zitat Arana M, Galván V, Jacobo SE, Bercoff PG (2013) Cation distribution and magnetic properties of LiMnZn ferrites. J Alloy Compd 568:5–10CrossRef Arana M, Galván V, Jacobo SE, Bercoff PG (2013) Cation distribution and magnetic properties of LiMnZn ferrites. J Alloy Compd 568:5–10CrossRef
26.
Zurück zum Zitat Choi EJ, Ahn YK, Song KC, An DH, Lee BG, Kang KU (2004) Cation distribution and spin-canted structure in cobalt ferrite particles from a cobalt-iron hydroxide carbonate complex. J Korean Phys Soc 44:1518–1520 Choi EJ, Ahn YK, Song KC, An DH, Lee BG, Kang KU (2004) Cation distribution and spin-canted structure in cobalt ferrite particles from a cobalt-iron hydroxide carbonate complex. J Korean Phys Soc 44:1518–1520
27.
Zurück zum Zitat Fayek MK, Bahgat AA, Abbas YM, Moberg L (1982) Neutron diffraction and Mossbauer effect study on a cobalt substituted zinc ferrite. J Phys C: Solid State Phys 15:2509–2518CrossRef Fayek MK, Bahgat AA, Abbas YM, Moberg L (1982) Neutron diffraction and Mossbauer effect study on a cobalt substituted zinc ferrite. J Phys C: Solid State Phys 15:2509–2518CrossRef
28.
Zurück zum Zitat Sawatzky GA, Van Der Woude F, Morrish AH (1969) Mössbauer study of several ferrimagnetic spinels. Phys Rev 187:747CrossRef Sawatzky GA, Van Der Woude F, Morrish AH (1969) Mössbauer study of several ferrimagnetic spinels. Phys Rev 187:747CrossRef
29.
Zurück zum Zitat Kumar AM, Rao PA, Varma MC, Choudary GS, Rao KH (2011) Cation distribution in Co0.7Me0.3Fe2O4. J Mod Phys 2:1083CrossRef Kumar AM, Rao PA, Varma MC, Choudary GS, Rao KH (2011) Cation distribution in Co0.7Me0.3Fe2O4. J Mod Phys 2:1083CrossRef
30.
Zurück zum Zitat Thakur S, Katyal SC, Singh M (2009) Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. J Magn Magn Mater 321:1–7CrossRef Thakur S, Katyal SC, Singh M (2009) Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. J Magn Magn Mater 321:1–7CrossRef
31.
Zurück zum Zitat Chakrabarty S, Dutta A, Pal M (2015) Enhanced magnetic properties of doped cobalt ferrite nanoparticles by virtue of cation distribution. J Alloy Compd 625:216–223CrossRef Chakrabarty S, Dutta A, Pal M (2015) Enhanced magnetic properties of doped cobalt ferrite nanoparticles by virtue of cation distribution. J Alloy Compd 625:216–223CrossRef
32.
Zurück zum Zitat Zaki HM, Heniti SH, Elmosalami TA (2015) Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J Alloy Compd 633:104–114CrossRef Zaki HM, Heniti SH, Elmosalami TA (2015) Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J Alloy Compd 633:104–114CrossRef
33.
Zurück zum Zitat Hakim MA, Kumar SN, Sikder SS, Maria K (2013) Cation distribution and electromagnetic properties of spinel type Ni–Cd ferrites. J Phys Chem Solids 74:1316–1321CrossRef Hakim MA, Kumar SN, Sikder SS, Maria K (2013) Cation distribution and electromagnetic properties of spinel type Ni–Cd ferrites. J Phys Chem Solids 74:1316–1321CrossRef
34.
Zurück zum Zitat Mohammed KA, Al-Rawas AD, Gismelseed AM, Sellai A, Widatallah HM, Yousif A, Elzain ME, Shongwe M (2012) Infrared and structural studies of Mg1−x Zn x Fe2O4 ferrites. Phys B Condens Matter 407:795–804CrossRef Mohammed KA, Al-Rawas AD, Gismelseed AM, Sellai A, Widatallah HM, Yousif A, Elzain ME, Shongwe M (2012) Infrared and structural studies of Mg1−x Zn x Fe2O4 ferrites. Phys B Condens Matter 407:795–804CrossRef
Metadaten
Titel
Variation in magnetic and structural properties of Co-doped Ni–Zn ferrite nanoparticles: a different aspect
verfasst von
Rajinder Kumar
Hitanshu Kumar
Ragini Raj Singh
P. B. Barman
Publikationsdatum
01.06.2016
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2016
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-3984-5

Weitere Artikel der Ausgabe 3/2016

Journal of Sol-Gel Science and Technology 3/2016 Zur Ausgabe

Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications

Thin films of ErNbO4 and YbNbO4 prepared by sol–gel

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Large room-temperature magnetoresistance in epitaxial La0.7Ca0.25Sr0.05MnO3 thin films prepared by sol–gel method

Original Paper: Fundamentals of sol-gel and hybrid materials processing

Developing an in situ EXAFS experiment of microwave-induced gelation

Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications

Structure and properties of the V-doped TiO2 thin films obtained by sol–gel and microwave-assisted sol–gel method

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Ca doping of mesoporous TiO2 films for enhanced photocatalytic efficiency under solar irradiation

Original Paper: Sol-gel and hybrid materials with surface modification for applications

Preparation and performance of sol–gel-derived alumina film modified by stearic acid

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.