Skip to main content
Top
Published in: Acta Mechanica 6/2023

13-02-2023 | Original Paper

Vibration of a piezoelectric nanobeam with flexoelectric effects by Adomian decomposition method

Authors: Somnath Karmakar, S. Chakraverty

Published in: Acta Mechanica | Issue 6/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper aims to reveal the effect of different elastic foundations on free vibrations of piezoelectric sandwich Euler nanobeam with flexoelectricity based on nonlocal strain gradient theory. Three different elastic foundations: constant, linear, and quadratic, are considered. Adomian decomposition method has been used to obtain the vibration frequencies for three different classical boundary conditions (S-S, C-S, and C-C). The piezoelectric and flexoelectric effects on vibration are also discussed in detail.
Literature
1.
go back to reference Ke, L.-L., Wang, Y.-S.: Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater. Struct. 21(2), 025018 (2012)CrossRef Ke, L.-L., Wang, Y.-S.: Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater. Struct. 21(2), 025018 (2012)CrossRef
3.
go back to reference Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)CrossRef Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)CrossRef
4.
go back to reference Reddy, J.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007)CrossRefMATH Reddy, J.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007)CrossRefMATH
5.
go back to reference Wang, C., Zhang, Y., He, X.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10), 105401 (2007)CrossRef Wang, C., Zhang, Y., He, X.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10), 105401 (2007)CrossRef
6.
go back to reference Şimşek, M.: Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Compos. B Eng. 56, 621–628 (2014)CrossRef Şimşek, M.: Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Compos. B Eng. 56, 621–628 (2014)CrossRef
7.
go back to reference Lim, C., Zhang, G., Reddy, J.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)MathSciNetCrossRefMATH Lim, C., Zhang, G., Reddy, J.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)MathSciNetCrossRefMATH
8.
go back to reference Şimşek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016)MathSciNetCrossRefMATH Şimşek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016)MathSciNetCrossRefMATH
9.
go back to reference Wang, J., Zhu, Y., Zhang, B., Shen, H., Liu, J.: Nonlocal and strain gradient effects on nonlinear forced vibration of axially moving nanobeams under internal resonance conditions. Appl. Math. Mech. 41(2), 261–278 (2020)MathSciNetCrossRefMATH Wang, J., Zhu, Y., Zhang, B., Shen, H., Liu, J.: Nonlocal and strain gradient effects on nonlinear forced vibration of axially moving nanobeams under internal resonance conditions. Appl. Math. Mech. 41(2), 261–278 (2020)MathSciNetCrossRefMATH
10.
go back to reference Lu, L., Guo, X., Zhao, J.: Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017)MathSciNetCrossRefMATH Lu, L., Guo, X., Zhao, J.: Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int. J. Eng. Sci. 116, 12–24 (2017)MathSciNetCrossRefMATH
11.
go back to reference Jena, S.K., Chakraverty, S., Malikan, M., Mohammad-Sedighi, H.: Hygro-magnetic vibration of the single-walled carbon nanotube with nonlinear temperature distribution based on a modified beam theory and nonlocal strain gradient model. Int. J. Appl. Mech. 12(05), 2050054 (2020)CrossRef Jena, S.K., Chakraverty, S., Malikan, M., Mohammad-Sedighi, H.: Hygro-magnetic vibration of the single-walled carbon nanotube with nonlinear temperature distribution based on a modified beam theory and nonlocal strain gradient model. Int. J. Appl. Mech. 12(05), 2050054 (2020)CrossRef
12.
go back to reference Ghodrati, B., Yaghootian, A., Ghanbar Zadeh, A., Mohammad-Sedighi, H.: Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories. Waves Random Complex Media 28(1), 15–34 (2018)MathSciNetCrossRefMATH Ghodrati, B., Yaghootian, A., Ghanbar Zadeh, A., Mohammad-Sedighi, H.: Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories. Waves Random Complex Media 28(1), 15–34 (2018)MathSciNetCrossRefMATH
13.
go back to reference Malikan, M., Nguyen, V.B., Tornabene, F.: Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Eng. Sci. Technol. Int. J. 21(4), 778–786 (2018) Malikan, M., Nguyen, V.B., Tornabene, F.: Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Eng. Sci. Technol. Int. J. 21(4), 778–786 (2018)
14.
go back to reference Yan, Z., Jiang, L.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22(24), 245703 (2011)CrossRef Yan, Z., Jiang, L.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22(24), 245703 (2011)CrossRef
15.
go back to reference Ebrahimi, F., Karimiasl, M.: Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams. Mech. Adv. Mater. Struct. 25(11), 943–952 (2018)CrossRef Ebrahimi, F., Karimiasl, M.: Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams. Mech. Adv. Mater. Struct. 25(11), 943–952 (2018)CrossRef
16.
go back to reference Arefi, M., Pourjamshidian, M., Arani, A.G.: Free vibration analysis of a piezoelectric curved sandwich nano-beam with FG-CNTRCS face-sheets based on various high-order shear deformation and nonlocal elasticity theories. Eur. Phys. J. Plus 133(5), 193 (2018)CrossRef Arefi, M., Pourjamshidian, M., Arani, A.G.: Free vibration analysis of a piezoelectric curved sandwich nano-beam with FG-CNTRCS face-sheets based on various high-order shear deformation and nonlocal elasticity theories. Eur. Phys. J. Plus 133(5), 193 (2018)CrossRef
17.
go back to reference Malikan, M., Eremeyev, V.A.: On the geometrically nonlinear vibration of a piezo-flexomagnetic nanotube. Math. Methods Appl. Sci. (2020) Malikan, M., Eremeyev, V.A.: On the geometrically nonlinear vibration of a piezo-flexomagnetic nanotube. Math. Methods Appl. Sci. (2020)
18.
go back to reference Zeng, S., Wang, K., Wang, B., Wu, J.: Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory. Appl. Math. Mech. 41(6), 859–880 (2020)MathSciNetCrossRefMATH Zeng, S., Wang, K., Wang, B., Wu, J.: Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory. Appl. Math. Mech. 41(6), 859–880 (2020)MathSciNetCrossRefMATH
19.
go back to reference Luo, T., Mao, Q., Zeng, S., Wang, K., Wang, B., Wu, J., Lu, Z.: Scale effect on the nonlinear vibration of piezoelectric sandwich nanobeams on Winkler foundation. J. Vib. Eng. Technol. 9(6), 1289–1303 (2021)CrossRef Luo, T., Mao, Q., Zeng, S., Wang, K., Wang, B., Wu, J., Lu, Z.: Scale effect on the nonlinear vibration of piezoelectric sandwich nanobeams on Winkler foundation. J. Vib. Eng. Technol. 9(6), 1289–1303 (2021)CrossRef
20.
go back to reference Malikan, M., Eremeyev, V.A.: On the dynamics of a visco-piezo-flexoelectric nanobeam. Symmetry 12(4), 643 (2020)CrossRef Malikan, M., Eremeyev, V.A.: On the dynamics of a visco-piezo-flexoelectric nanobeam. Symmetry 12(4), 643 (2020)CrossRef
21.
go back to reference Mohammad Khanlo, H., Dehghani, R.: Distributed-parameter dynamic modeling and bifurcation analysis of a trapezoidal piezomagnetoelastic energy harvester. J. Appl. Comput. Mech. 8(1), 97–113 (2022) Mohammad Khanlo, H., Dehghani, R.: Distributed-parameter dynamic modeling and bifurcation analysis of a trapezoidal piezomagnetoelastic energy harvester. J. Appl. Comput. Mech. 8(1), 97–113 (2022)
22.
go back to reference Malikan, M., Eremeyev, V.A., Żur, K.K.: Effect of axial porosities on flexomagnetic response of in-plane compressed piezomagnetic nanobeams. Symmetry 12(12), 1935 (2020)CrossRef Malikan, M., Eremeyev, V.A., Żur, K.K.: Effect of axial porosities on flexomagnetic response of in-plane compressed piezomagnetic nanobeams. Symmetry 12(12), 1935 (2020)CrossRef
23.
go back to reference Eltaher, M., Alshorbagy, A.E., Mahmoud, F.: Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Appl. Math. Model. 37(7), 4787–4797 (2013)MathSciNetCrossRef Eltaher, M., Alshorbagy, A.E., Mahmoud, F.: Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Appl. Math. Model. 37(7), 4787–4797 (2013)MathSciNetCrossRef
24.
go back to reference Chakraverty, S., Bhat, R., Stiharu, I.: Using boundary characteristic orthogonal polynomials in the Rayleigh–Ritz method. Shock Vib. Dig. 31(3), 187–194 (1999)CrossRef Chakraverty, S., Bhat, R., Stiharu, I.: Using boundary characteristic orthogonal polynomials in the Rayleigh–Ritz method. Shock Vib. Dig. 31(3), 187–194 (1999)CrossRef
25.
go back to reference Behera, L., Chakraverty, S.: Free vibration of Euler and Timoshenko nanobeams using boundary characteristic orthogonal polynomials. Appl. Nanosci. 4(3), 347–358 (2014)CrossRef Behera, L., Chakraverty, S.: Free vibration of Euler and Timoshenko nanobeams using boundary characteristic orthogonal polynomials. Appl. Nanosci. 4(3), 347–358 (2014)CrossRef
26.
go back to reference Behera, L., Chakraverty, S.: Static analysis of nanobeams using Rayleigh–Ritz method. J. Mech. Mater. Struct. 12(5), 603–616 (2017)MathSciNetCrossRef Behera, L., Chakraverty, S.: Static analysis of nanobeams using Rayleigh–Ritz method. J. Mech. Mater. Struct. 12(5), 603–616 (2017)MathSciNetCrossRef
27.
go back to reference Chakraverty, S., Behera, L.: Static and Dynamic Problems of Nanobeams and Nanoplates. World Scientific, Singapore (2016)CrossRef Chakraverty, S., Behera, L.: Static and Dynamic Problems of Nanobeams and Nanoplates. World Scientific, Singapore (2016)CrossRef
28.
go back to reference Chakraverty, S., Behera, L.: Free vibration of non-uniform nanobeams using Rayleigh–Ritz method. Physica E 67, 38–46 (2015)CrossRef Chakraverty, S., Behera, L.: Free vibration of non-uniform nanobeams using Rayleigh–Ritz method. Physica E 67, 38–46 (2015)CrossRef
29.
go back to reference Wang, X., Bert, C.: A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates. JSV 162(3), 566–572 (1993)CrossRefMATH Wang, X., Bert, C.: A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates. JSV 162(3), 566–572 (1993)CrossRefMATH
30.
go back to reference Behera, L., Chakraverty, S.: Application of differential quadrature method in free vibration analysis of nanobeams based on various nonlocal theories. Comput. Math. Appl. 69(12), 1444–1462 (2015)MathSciNetCrossRefMATH Behera, L., Chakraverty, S.: Application of differential quadrature method in free vibration analysis of nanobeams based on various nonlocal theories. Comput. Math. Appl. 69(12), 1444–1462 (2015)MathSciNetCrossRefMATH
31.
go back to reference Karmakar, S., Chakraverty, S.: Thermal vibration of nonhomogeneous Euler nanobeam resting on Winkler foundation. Eng. Anal. Bound. Elem. 140, 581–591 (2022)MathSciNetCrossRefMATH Karmakar, S., Chakraverty, S.: Thermal vibration of nonhomogeneous Euler nanobeam resting on Winkler foundation. Eng. Anal. Bound. Elem. 140, 581–591 (2022)MathSciNetCrossRefMATH
32.
go back to reference Malikan, M., Eremeyev, V.A.: On nonlinear bending study of a piezo-flexomagnetic nanobeam based on an analytical-numerical solution. Nanomaterials 10(9), 1762 (2020)CrossRef Malikan, M., Eremeyev, V.A.: On nonlinear bending study of a piezo-flexomagnetic nanobeam based on an analytical-numerical solution. Nanomaterials 10(9), 1762 (2020)CrossRef
33.
go back to reference Jena, S.K., Chakraverty, S., Mahesh, V., Harursampath, D.: Wavelet-based techniques for hygro-magneto-thermo vibration of nonlocal strain gradient nanobeam resting on winkler-pasternak elastic foundation. Eng. Anal. Bound. Elem. 140, 494–506 (2022)MathSciNetCrossRefMATH Jena, S.K., Chakraverty, S., Mahesh, V., Harursampath, D.: Wavelet-based techniques for hygro-magneto-thermo vibration of nonlocal strain gradient nanobeam resting on winkler-pasternak elastic foundation. Eng. Anal. Bound. Elem. 140, 494–506 (2022)MathSciNetCrossRefMATH
34.
go back to reference Jena, S.K., Chakraverty, S., Malikan, M.: Application of shifted Chebyshev polynomial-based Rayleigh–Ritz method and Navier’s technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation. Eng. Comput. 37(4), 3569–3589 (2021)CrossRef Jena, S.K., Chakraverty, S., Malikan, M.: Application of shifted Chebyshev polynomial-based Rayleigh–Ritz method and Navier’s technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation. Eng. Comput. 37(4), 3569–3589 (2021)CrossRef
35.
go back to reference Zhang, D., Lei, Y., Adhikari, S.: Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory. Acta Mech. 229(6), 2379–2392 (2018)MathSciNetCrossRefMATH Zhang, D., Lei, Y., Adhikari, S.: Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory. Acta Mech. 229(6), 2379–2392 (2018)MathSciNetCrossRefMATH
36.
go back to reference Kacar, A., Tan, H.T., Kaya, M.O.: Free vibration analysis of beams on variable Winkler elastic foundation by using the differential transform method. Math. Comput. Appl. 16(3), 773–783 (2011)MATH Kacar, A., Tan, H.T., Kaya, M.O.: Free vibration analysis of beams on variable Winkler elastic foundation by using the differential transform method. Math. Comput. Appl. 16(3), 773–783 (2011)MATH
37.
go back to reference Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method, with a Preface by Yves Cherruault. Fundamental Theories of Physics, vol. 1. Kluwer Academic Publishers Group, Dordrecht (1994)CrossRef Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method, with a Preface by Yves Cherruault. Fundamental Theories of Physics, vol. 1. Kluwer Academic Publishers Group, Dordrecht (1994)CrossRef
38.
go back to reference Mao, Q., Pietrzko, S.: Free vibration analysis of stepped beams by using Adomian decomposition method. Appl. Math. Comput. 217(7), 3429–3441 (2010)MathSciNetMATH Mao, Q., Pietrzko, S.: Free vibration analysis of stepped beams by using Adomian decomposition method. Appl. Math. Comput. 217(7), 3429–3441 (2010)MathSciNetMATH
39.
go back to reference Mao, Q.: Free vibration analysis of multiple-stepped beams by using Adomian decomposition method. Math. Comput. Model. 54(1–2), 756–764 (2011)MathSciNetCrossRefMATH Mao, Q.: Free vibration analysis of multiple-stepped beams by using Adomian decomposition method. Math. Comput. Model. 54(1–2), 756–764 (2011)MathSciNetCrossRefMATH
40.
go back to reference Chanthanumataporn, S., Watanabe, N.: Free vibration of a light sandwich beam accounting for ambient air. J. Vib. Control 24(16), 3658–3675 (2018)MathSciNetCrossRef Chanthanumataporn, S., Watanabe, N.: Free vibration of a light sandwich beam accounting for ambient air. J. Vib. Control 24(16), 3658–3675 (2018)MathSciNetCrossRef
Metadata
Title
Vibration of a piezoelectric nanobeam with flexoelectric effects by Adomian decomposition method
Authors
Somnath Karmakar
S. Chakraverty
Publication date
13-02-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 6/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03512-7

Other articles of this Issue 6/2023

Acta Mechanica 6/2023 Go to the issue

Premium Partners